【题目】已知圆过定点,圆心在抛物线上,、为圆与轴的交点.
(1)求圆半径的最小值;
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记,,求的最大值,并求此时圆的方程.
【答案】(1);(2),证明见解析;(3),
【解析】
(1)设半径为,根据抛物线方程设出圆心坐标,然后根据圆心和定点写出半径的表达式,计算的最小值即可;
(2)根据(1)中的表示,写出圆的方程,令计算出的横坐标,计算是否为定值即可证明;
(3)计算出的值,然后利用已求的值对进行化简,再根据基本不等式确定最大值,从而求出圆心坐标和半径确定出圆的方程.
(1)设圆心坐标为,半径为,所以,取等号时,所以;
(2)因为圆心坐标为,半径,所以圆的方程为:,
令,所以,所以,所以,所以为定值;
(3)由(2)可知:取,,
所以,,
所以,
所以的最大值为,
取等号时,所以,所以圆心坐标为,半径,
所以圆的方程为:.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线上的动点到点的距离与到直线的距离相等.
(1)求曲线的轨迹方程;
(2)过点分别作射线、交曲线于不同的两点、,且以为直径的圆经过点.试探究直线是否过定点?如果是,请求出该定点;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,是一块边长为7米的正方形铁皮,其中是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC与CD上的长方形铁皮,其中P是上一点.设,长方形的面积为S平方米.
(1)求S关于的函数解析式;
(2)设,求S关于t的表达式以及S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个无穷数列和的前项和分别为、,,,对任意的,都有.
(1)求数列的通项公式;
(2)若为等差数列,对任意的,都有,证明:;
(3)若为等比数列,,,求满足()的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,, …,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知AB是圆O的直径,C,D是圆上不同两点,且,,圆O所在平面.
(1)求直线PB与CD所成角;
(2)若PB与圆O所在平面所成角为,且,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电动车售后服务调研小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:,绘制成如图所示的频率分布直方图.
(1)求续驶里程在的车辆数;
(2)求续驶里程的平均数;
(3)若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com