精英家教网 > 高中数学 > 题目详情
4.已知tanα=3,则$\frac{sinα-cosα}{2sinα+cosα}$的值为$\frac{2}{7}$.

分析 利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵tanα=3,则$\frac{sinα-cosα}{2sinα+cosα}$=$\frac{tanα-1}{2tanα+1}$=$\frac{2}{7}$,
故答案为:$\frac{2}{7}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若A、B是两个集合,则下列命题中真命题是(  )
A.如果A⊆B,那么A∩B=AB.如果A∩B=A,那么(∁UA)∩B=∅
C.如果A⊆B,那么A∪B=AD.如果A∪B=A,那么A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心C在直线l上;若动点M满足:|MA|=2|MO|,且M的轨迹与圆C有公共点.求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设U=R,P={x|x>1},Q={x|0<x<2},则∁U(P∪Q)=(  )
A.{x|x≤0}B.{x|x≤1}C.{x|x≥2}D.{x|x≤1或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.在△ABC中,“A>B”是“sinA>sinB”必要不充分条件
C.“若tanα≠$\sqrt{3}$,则α≠$\frac{π}{3}$”是真命题
D.?x0∈(-∞,0)使得3x0<4x0成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2-4ax+alnx(a∈R)
(1)讨论f(x)的极值点的个数
(2)若f(x)有两个不同的极值点x1,x2,证明:f(x1)+f(x2)<-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线$\frac{{x}^{2}}{{m}^{2}+12}$-$\frac{{y}^{2}}{4-{m}^{2}}$=1的焦距是(  )
A.4B.6C.8D.与m有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{mx-6}{{{x^2}+n}}$的图象在点P(-1,f(-1))处的切线方程为x+2y+5=0,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.把$-sinα+\sqrt{3}cosα$化成Asin(α+φ)(A>0,φ∈(0,2π))的形式为2sin($α+\frac{2π}{3}$).

查看答案和解析>>

同步练习册答案