精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,讨论的单调性;

(2)当时,若方程有两个相异实根,且,证明: .

【答案】(1) 上单调递减, 上单调递增.(2)见解析.

【解析】试题分析:

1由题令,解得(舍去),,结合图象可得的符号,进而得到函数的单调性;(2)将证明的问题转化为比较两个函数值大小的问题,然后利用单调性求解。设,可得,再通过构造函数的方法可证得,即,最后再利用上单调递增,可得.

试题解析

(1)因为

所以

因为,所以

(舍去),

所以当时, 单调递减,

时, 单调递增,

上单调递减,在上单调递增.

(2)当时,

的两个相异实根分别为

满足,且

,所以上递减

由题意可知,故

所以

时,

所以是减函数,

所以

所以当时,

所以,

因为 上单调递增,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求的普通方程和的倾斜角;

(2)设点交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的程序语句输出的结果S为( )

A.19
B.17
C.15
D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)证明:a,b,c成等比数列;
(Ⅱ)若角B的平分线BD交AC于点D,且b=6,SBAD=2SBCD , 求BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设个人月收入在5000元以内的个人所得税档次为(单位:元):

设某人的月收入为x元,试编一段程序,计算他应交的个人所得税.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:(k﹣1)x﹣2y+5﹣3k=0(k∈R)恒过定点P,圆C经过点A(4,0)和点P,且圆心在直线x﹣2y+1=0上.
(1)求定点P的坐标;
(2)求圆C的方程;
(3)已知点P为圆C直径的一个端点,若另一个端点为点Q,问:在y轴上是否存在一点M(0,m),使得△PMQ为直角三角形,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是梯形,四边形是矩形,且平面平面 是线段上的动点.

1试确定点的位置,使平面,并说明理由;

21的条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,若cosA= ,c=3b,且△ABC面积SABC=
(1)求边b.c;
(2)求边a并判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检测某轮胎公司生产的轮胎的宽度,需要抽检一批轮胎(共10个轮胎),已知这批轮胎宽度(单位: )的折线图如下图所示:

(1)求这批轮胎宽度的平均值;

(2)现将这批轮胎送去质检部进行抽检,抽检方案是:从这批轮胎中任取5个作检验,这5个轮胎的宽度都在内,则称这批轮胎合格,如果抽检不合格,就要重新再抽检一次,若还是不合格,这批轮胎就认定不合格.

求这批轮胎第一次抽检就合格的概率;

为这批轮胎的抽检次数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案