精英家教网 > 高中数学 > 题目详情
2.函数y=x2sinx的导数为(  )
A.y′=2xcosx+x2sinxB.y′=2xcosx-x2sinx
C.y′=2xsinx+x2cosxD.y′=2xsinx-x2cosx

分析 根据导数的运算法则求导即可.

解答 解:y′=(x2sinx)′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx,
故选:C.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知关于x不等式:ax2+(a-1)x-1≥0
(1)当a=2时,求不等式的解集;
(2)当a∈R时,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=-x2+4x-2在区间[0,3)上的值域(先用集合表示,再用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正数a,b满足a+b=3,则a•b的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名队员参加比赛,种子选手都必须在内,那么不同的选法共有35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an}的通项公式an=$\frac{n+1}{n+2}$(n∈N+),设{an}的前n项积为sn,则使sn<$\frac{1}{32}$成立的自然数n(  )
A.有最大值62B.有最小值63C.有最大值62D.有最小值31

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a为正实数,函数f(x)=ax2-a2x-$\frac{1}{a}$的图象与x轴交于A,B两点,与y轴交于C点.
(1)解关于x不等式f(x)>f(1);
(2)求AB的最小值;
(3)证明△ABC为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在数列{an}中,Sn为它的前n项和,已知a2=4,a3=15,且数列{an+n}是等比数列,则Sn=3n-$\frac{{n}^{2}+n}{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,点$({n,\frac{S_n}{n}})({n∈{N^*}})$在直线3x-y-1=0上,设cn=$\frac{4}{{{a_n}{a_{n+1}}}}$,Tn是数列{cn}的前n项和.
(1)求数列{an}的通项公式;
(2)求使得Tn<$\frac{K}{9}$对所有的n∈N*都成立的最小正整数K;
(3)是否存在正整数m,n(1<m<n),使T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案