精英家教网 > 高中数学 > 题目详情
定义在R上的可导函数f(x)=x2+2xf′(2)+15,在闭区间[0,m]上有最大值15,最小值-1,则m的取值范围是( )
A.m≥2
B.2≤m≤4
C.m≥4
D.4≤m≤8
【答案】分析:先求f'(2),从而确定f(x)的解析式,再根据最值和区间端点处的函数值确定m的范围
解答:解:函数f(x)=x2+2xf′(2)+15的导函数为f'(x)=2x+2f'(2)
∴f'(2)=4+2f'(2)
∴f'(2)=-4
∴f(x)=x2-8x+15,且对称轴为x=4
又在闭区间[0,m]上的最大值15,最小值-1,且f(0)=15,f(4)=-1
∴[0,4]⊆[0,m],且f(m)≤f(0)=15
∴4≤m≤8
故选D
点评:本题考查二次函数的最值问题,要注意区间与对称轴的位置关系.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、若函数y=f(x)是定义在R上的可导函数,则f′(x0)=0是x0为函数y=f(x)的极值点的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的可导函数y=f(x)在x=1处的切线方程是y=-x+2,则f(1)+f'(1)=(  )
A、-1
B、
1
2
C、2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的可导函数f(x)满足f(-x)=f(x),f(x-2)=f(x+2),且当x∈[2,4]时,f(x)=x2+2xf(2),则f(-
1
2
)与f(
16
3
)的大小关系是(  )
A、f(-
1
2
)=f(
16
3
B、f(-
1
2
)<f(
16
3
C、f(-
1
2
)>f(
16
3
D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)、g(x)是定义在R上的可导函数,且f(x)g(x)+f(x)g(x)<0,则当a<x<b时有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的可导函数y=f(x)对任意x∈R都有f(x)=f(-x),且当x≠0时,有x•f′(x)<0,现设a=f(-sin32°),b=f(cos32°),则实数a,b的大小关系是
a>b
a>b

查看答案和解析>>

同步练习册答案