精英家教网 > 高中数学 > 题目详情

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:

1)两种大树各成活1株的概率;

2)成活的株数的分布列与期望.

【答案】() 所求概率为

() 综上知有分布列


0

1

2

3

4

P

1/36

1/6

13/36

1/3

1/9

的期望为 (株)

【解析】表示甲种大树成活k株,k012 …………………… 1

表示乙种大树成活l株,l012 ,先计算出,它都属于n次独立重复试验发生n次的概率.

I)相互独立试验同时发生的概率所以所求概率为.

(2)首先确定的所有可能值为01234,然后分别计算出取每个值对应的概率,再列出分布列,根据分布列计算出期望值.

表示甲种大树成活k株,k012 ……………… 1

表示乙种大树成活l株,l012 …………………… 2

独立. 由独立重复试验中事件发生的概率公式有

, .

据此算得, , .…………………… 3

, , .

() 所求概率为.…………………… 6

() 解法一: 的所有可能值为01234,且

,…………………… 7

,…………………8

=……9

.……… 10

.……… 11

综上知有分布列


0

1

2

3

4

P

1/36

1/6

13/36

1/3

1/9

从而, 的期望为 (株)…… 13

解法二:分布列的求法同上

分别表示甲乙两种树成活的株数,则10

故有从而知

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q= (x≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a<0,关于x的一元二次不等式ax2﹣(2+a)x+2>0的解集为(
A.{x|x< 或x>1}
B.{x| <x<1}
C.{x|x<1或x> }
D.{x|1<x< }

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中真命题的个数为(
①命题“若lgx=0,则x=l”的逆否命题为“若lgx≠0,则x≠1”
②若“p∧q”为假命题,则p,q均为假命题
③命题p:x∈R,使得sinx>l;则¬p:x∈R,均有sinx≤1
④“x>2”是“ ”的充分不必要条件.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求处的切线方程;

(Ⅱ)求单调区间;

(Ⅲ)若图象与轴关于 两点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)

几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50


(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5﹣7分钟,乙每次解答一道几何题所用的时间在6﹣8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(3)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上.

(1)求椭圆W的方程;
(2)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正数数列{an}的前n项和为Sn , 已知对于任意的n∈Z+ , 均有Sn与1正的等比中项等于an与1的等差中项.
(1)试求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图像与x轴恰有两个公共点,则c= ( )
A.-2或2
B.-9或3
C.-1或1
D.-3或1

查看答案和解析>>

同步练习册答案