精英家教网 > 高中数学 > 题目详情
设数列{an},{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1-an}是等差数列,{bn+1-bn}是等比数列.
(1)分别求出数列{an},{bn}的通项公式;
(2)求数列{an}中最小项及最小项的值.
分析:(1)利用已知,可求出{an+1-an}的首项与公差,{bn+1-bn}的首项与公比,代入等差和等比数列的通项公式,即可求出an+1-an与bn+1-bn的表达式,再利用叠加法转化为等差或等比数列求和,从而求出an与bn
(2)利用配方法求an的最小值.
解答:解:(1)a2-a1=-2,a3-a2=-1由{an+1-an}成等差数列知其公差为1,故an+1-an=-2+(n-1)•1=n-3;
b2-b1=-2,b3-b2=-1,
由{bn+1-bn}等比数列知,其公比为
1
2
,故bn+1-bn=-2•(
1
2
)n-1
,(6分)
an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1
=(n-1)•(-2)+
(n-1)(n-2)
2
•1
+6=
n2-3n+2
2
-2n+8
=
n2-7n+18
2
,(8分)
bn=(bn-bn-1)+(bn-1-bn-2)+(bn-2-bn-3)+…+(b2-b1)+b1=
-2[1-(
1
2
)n-1]
1-
1
2
+6=2+23-n
(2)∵an=
n2-7n+18
2
=
1
2
(n-
7
2
2+
23
8

∴n=3或n=4时,an取到最小值,a3=a4=3.
点评:本题主要考查了二次函数求最值,等差和等比数列的通项公式等知识,同时考查了分析,推理的能力及运算能力,解题过程中充分运用了叠加法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}的首项为1,前n项和是Sn,存在常数A,B使an+Sn=An+B对任意正整数n都成立.
(1)设A=0,求证:数列{an}是等比数列;
(2)设数列{an}是等差数列,若p<q,且
1
Sp
+
1
Sq
=
1
S11
,求p,q的值.
(3)设A>0,A≠1,且
an
an+1
≤M
对任意正整数n都成立,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=0,4an+1=4an+2
4an+1
+1
,令bn=
4an+1

(1)试判断数列{bn}是否为等差数列?并求数列{bn}的通项公式;
(2)令Tn=
b1×b3×b5×…×b(2n-1)
b2×b4×b6×…b2n
,是否存在实数a,使得不等式Tn
bn+1
2
log2(a+1)
对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由.
(3)比较bnbn+1bn+1bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知a1=1,a2=6,a3=11,且(5n-8)Sn+1-(5n+2)Sn=An+B,n=1,2,3…,其中A,B为常数.数列{an}的通项公式为
an=5n-4
an=5n-4

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn
(1)证明:当b=2时,{an-n•2n-1}是等比数列;
(2)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=an+b(n∈N*,a>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(1)若a=2,b=-3,求b10
(2)若a=2,b=-1,求数列{bm}的前2m项和公式.

查看答案和解析>>

同步练习册答案