精英家教网 > 高中数学 > 题目详情

【题目】一扇形的周长为20cm,当扇形的圆心角α等于多少时,这个扇形的面积最大?最大面积是多少?

【答案】解:设扇形的半径为r,弧长为l,则
l+2r=20,即l=20﹣2r(0<r<10).
扇形的面积S= lr,将上式代入,
得S= (20﹣2r)r=﹣r2+10r=﹣(r﹣5)2+25,
所以当且仅当r=5时,S有最大值25,
此时l=20﹣2×5=10,
可得:α= =2rad.
所以当α=2rad时,扇形的面积取最大值,最大值为25cm2
【解析】设扇形的半径为r,弧长为l,利用周长关系,表示出扇形的面积,利用二次函数求出面积的最大值,以及圆心角的大小.
【考点精析】认真审题,首先需要了解扇形面积公式(若扇形的圆心角为,半径为,弧长为,周长为,面积为,则).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈A,且A={x|a﹣1<x<a+1},命题q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求实数a的值;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是(
A.(﹣2,1)
B.(1,2)
C.(2,1)
D.(﹣1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,P、Q分别为边AB、DA上的点,当△APQ的周长为2时,求∠PCQ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若 ,求曲线 在点 处的切线方程;

(2)若对任意 在恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面 .

(Ⅰ)求证: 平面

(Ⅱ)点在线段上运动,设平面与平面所成锐二面角为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于平面向量,有下列四个命题:
①若
=(1,1), =(2,x),若 平行,则x=2.
③非零向量 满足| |=| |=| |,则 的夹角为60°.
④点A(1,3),B(4,﹣1),与向量 同方向的单位向量为( ).
其中真命题的序号为 . (写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级A,B两个班中各选出7名学生参加物理竞赛,他们的成绩(单位:分)的茎叶图如图所示,其中A班学生的平均分是85分

(1)求m的值,并计算A班7名学生成绩的方差s2
(2)从成绩在90分以上的学生中随机抽取两名学生,求至少有一名A班学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数据x1 , x2 , x3 , x4 , x5的方差为3,则数据2x1+1,2x2+1,2x3+1,2x4+1,2x5+1的方差为

查看答案和解析>>

同步练习册答案