分析 由1-$\frac{1}{1+2+3+…+n}$=1-$\frac{2}{n(n+1)}$=$\frac{n(n+1)-2}{n(n+1)}$,得Tn=$\frac{4}{6}×\frac{10}{12}×\frac{18}{20}×\frac{28}{30}×…×\frac{n(n+1)-2}{n(n+1)}$,由此依次求出Tn的前四项,由此能求出结果.
解答 解:∵$\frac{1}{1+2+3+…+n}$=$\frac{2}{n(n+1)}$,
∴1-$\frac{1}{1+2+3+…+n}$=1-$\frac{2}{n(n+1)}$=$\frac{n(n+1)-2}{n(n+1)}$,
∴${T_n}=({1-\frac{1}{1+2}})({1-\frac{1}{1+2+3}})•…•({1-\frac{1}{1+2+3+…+n}})$
=$\frac{4}{6}×\frac{10}{12}×\frac{18}{20}×\frac{28}{30}×…×\frac{n(n+1)-2}{n(n+1)}$,
∴T1=$\frac{4}{6}$=$\frac{2+2}{3×2}$,
T2=$\frac{4}{6}×\frac{10}{12}$=$\frac{2}{3}×\frac{5}{6}$=$\frac{3+2}{3×3}$,
T3=$\frac{5}{9}×\frac{18}{20}$=$\frac{4+2}{3×4}$,
T4=$\frac{1}{2}×\frac{28}{30}$=$\frac{5+2}{3×5}$,
…
由此猜想,Tn=$\frac{(n+1)+2}{3(n+1)}$.
故答案为:$\frac{(n+1)+2}{3(n+1)}$.
点评 本题考查数列的前n项积的求法,是中档题,解题时要认真审题,注意归纳法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | -2 | C. | -3 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1<m<3 | B. | 1 | C. | 1或2 | D. | 0或1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com