分析 设函数解析式为y=Asin(ωx+φ),不妨令A>0,ω>0,结合函数图象求出各参数的值,可得答案.
解答 解:设函数解析式为y=Asin(ωx+φ),不妨令A>0,ω>0,
∵函数的最大值为2,最小值为-2,
∴A=2,
∵T=$\frac{4π}{3}$-($-\frac{2π}{3}$)=2π,
∴ω=1,
又由x=$-\frac{2π}{3}$时,
$-\frac{2π}{3}$+φ=0,
故φ=$\frac{2π}{3}$,
故y=2sin(x+$\frac{2π}{3}$)
点评 本题考查的知识点是由y=Asin(ωx+φ)的图象确定其解析式,熟练掌握各个参数与函数图象和性质的关系,是解答的关键.
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com