精英家教网 > 高中数学 > 题目详情

【题目】解关于x的不等式:(a+1)x2-(2a+3)x+2<0.

【答案】答案见解析。

【解析】

因为二次项系数a+1含字母应对a+1分等于0、大于0、小于0三种情况讨论。当a+1=0时不等式转化为一次不等式;当a+1大于0、小于0时,结合二次函数图像解一元二次不等式即可。

(1)当a+1=0a=-1时,原不等式变为-x+2<0, 即x>2.

(2)当a+1>0a>-1时,原不等式可转化为

方程的根是

若-1<a<,则>2,解得2<x<

a,则=2,解得x

a>,则<2, 解得<x<2.

(3)当a<-1时,原不等式可转化为.

a<-1,∴<2, 解得x<x>2.

综上可知,

a>时,原不等式的解集为{x|<x<2};

a时,原不等式的解集为

当-1<a<时,原不等式的解集为{x|2<x<}.

a=-1时,原不等式的解集为{x|x>2}.

a<-1时,原不等式的解集为{x| x<x>2}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且满足f(x+2)=﹣ ,当1≤x≤2时,f(x)=x,则f(﹣ )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于异面直线,有下列四个命题:

(1)过直线有且仅有一个平面,使//;

(2)过直线有且仅有一个平面,使 ;

(3)在空间中存在平面,使//,//;

(4)在空间中不存在平面,使 , ;

其中正确命题的序号是____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2a2b2。设想正方形换成正方体,把截线换成如下图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用S1S2S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为了解辖区住户中离退休老人每天的平均户外活动时间,从辖区住户的离退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外活动时间(单位:小时),活动时间按照[0,0.5),[0.5,1),…,[4,4.5]从少到多分成9组,制成样本的频率分布直方图如图所示.

Ⅰ)求图中a的值;

Ⅱ)估计该社区住户中离退休老人每天的平均户外活动时间的中位数;

(III)在[1.5,2)、[2,2.5)这两组中采用分层抽样抽取9人,再从这9人中随机抽取2人,求抽取的两人恰好都在同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足a1=2,an1=3an+2,

(1)证明:是等比数列,并求的通项公式;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是等腰三角形,且.四边形是直角梯形,,,,,.

(Ⅰ)求证:平面;

(Ⅱ)当平面 平面时,求四棱锥的体积;

(Ⅲ)请在图中所给的五个点中找出两个点,使得这两点所在的直线与直线垂直,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)在区间A上,对a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间[ ,e]上是“三角形函数”,则实数m的取值范围为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的三边长满足,则的取值范围为______

查看答案和解析>>

同步练习册答案