精英家教网 > 高中数学 > 题目详情
2.如图是一个几何体的三视图,其中正视图和侧视图都是腰长为3,底边长为2的等腰三角形,则该几何体的体积是(  )
A.$\frac{{2\sqrt{2}}}{3}π$B.$2\sqrt{2}π$C.$8\sqrt{2}π$D.$\frac{{8\sqrt{2}}}{3}π$

分析 由三视图可知:该几何体为一个圆锥.利用体积计算公式即可得出.

解答 解:由三视图可知:该几何体为一个圆锥.底面半径为1,母线长为:3,高为$\sqrt{9-1}$=2$\sqrt{2}$;
其体积=$\frac{1}{3}$π×12×2$\sqrt{2}$=$\frac{2\sqrt{2}}{3}$π.
故选:A.

点评 本题考查了三视图的有关知识、圆锥的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=sinωx的图象,则只要将f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向右平移$\frac{π}{6}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$.
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性并证明;
(3)若f(a)=3,求f(-a)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2-2bx+a,满足f(x)=f(2-x),且方程f(x)-$\frac{3}{4}$a=0有两个相等的实根.
(1)求函数f(x)的 解析式.
(2)当x∈[t,t+1](t>0)时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在梯形ABCD中AB∥CD,AD=CD=CB=2,∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=2.
(Ⅰ)求证:BC⊥平面ACFE;
(Ⅱ)求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:?x∈R,sinx>1,则(  )
A.?p:?x∈R,sinx≤1B.?p:?x∈R,sinx≤1C.?p:?x∈R,sinx≤1D.?p:?x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ax3+bx2+cx-34(a,b,c∈R)的导函数为f′(x),若不等式f′(x)≤0的解集为{x|-2≤x≤3},且f(x)的极小值等于-196,则a的值是(  )
A.-$\frac{81}{22}$B.$\frac{1}{3}$C.5D..4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos(π-α)=(  )
A.cosαB.-cosαC.sinαD.-sinα

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=0,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)≤0,则|$\overrightarrow{a}$+$\overrightarrow{b}$-2$\overrightarrow{c}$|的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{2}$-1D.2-$\sqrt{2}$

查看答案和解析>>

同步练习册答案