精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当 时,函数 的图象与轴交于两点 ,且 ,又的导函数.若正常数 满足条件.证明:.

【答案】(1)-1(2)(3)参考解析

【解析】

试题(1),可知[,1]是增函数,在[1,2]是减函数,所以最大值为f(1).(2)在区间上为单调递增函数,上恒成立,利用分离参数上恒成立,即求的最大值。

(3)有两个实根两式相减,又

要证:,只需证:可证。

试题解析:(1)

函数[,1]是增函数,在[1,2]是减函数,

所以

(2)因为,所以

因为在区间单调递增函数,所以在(0,3)恒成立

,有=,(

综上:

(3)∵,又有两个实根

,两式相减,得

,

于是

要证:,只需证:

只需证:.(*)

,∴(*)化为 只证即可.

在(0,1)上单调递增,

.∴

(其他解法根据情况酌情给分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数的一个极值点为,求的单调区间;

(2)若,且关于的不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最值;

(2)若,当有两个极值点时,总有,求此时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图甲中的两条曲线分别表示某理想状态下捕食者和被捕食者数量随时间的变化规律、对捕食者和被捕食者数量之间的关系描述错误的是( )

A. 捕食者和被捕食者数量与时间以年为周期

B. 由图可知,当捕食者数量增多的过程中,被捕食者数量先增多后减少

C. 捕食者和被捕食者数量之间的关系可以用图1乙描述

D. 捕食者的数量在第年和年之间数量在急速减少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名六年级学生进行了问卷调查,得到如下列联表(平均每天喝以上为常喝,体重超过为肥胖):

常喝

不常喝

合计

肥胖

不胖

合计

(1)已知在全部人中随机抽取人,求抽到肥胖的学生的概率?

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;

(3)现从常喝碳酸饮料且肥胖的学生中(其中名女生),抽取人参加电视节目,则正好抽到一男一女的概率是多少?

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数上单调递增,又函数.

(1)求实数的值,并说明函数的单调性;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在微信群中发了一个8拼手气红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领到的钱数不少于其他任何人的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为t为参数),曲线C的极坐标方程为ρ=4sinθ+).

(1)求直线l的普通方程与曲线C的直角坐标方程;

(2)若直线l与曲线C交于MN两点,求△MON的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

同步练习册答案