精英家教网 > 高中数学 > 题目详情
(满分13分)已知椭圆中心在原点,焦点在x轴上,离心率,点分别为椭圆的左、右焦点,过右焦点且垂直于长轴的弦长为
⑴ 求椭圆的标准方程;
⑵ 过椭圆的左焦点作直线,交椭圆于两点,若,求直线的倾斜角。
 
   
(1)略
(2)略
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
(1)   椭圆C与椭圆有相同焦点,且椭圆C上一点P到两焦点的距离之和等于,求椭圆C的标准方程;
(2)   椭圆的两个焦点F1F2x轴上,以| F1F2|为直径的圆与椭圆的一个交点为(3,4),求椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:的长轴长为4.
(1)若以原点为圆心,椭圆短半轴长为半径的圆与直线相切,求椭圆焦点坐标;
(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆交于M,N两点,直线PM,PN的斜率乘积为,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知圆的方程为,椭圆的方程,且离心率为,如果相交于两点,且线段恰为圆的直径.
(Ⅰ)求直线的方程和椭圆的方程;
(Ⅱ)如果椭圆的左、右焦点分别是,椭圆上是否存在点,使得,如果存在,请求点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.

(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程的曲线是焦点在轴上的椭圆,则的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆及直线,当直线被椭圆截得的弦最长时的直线方程为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点满足,则=       

查看答案和解析>>

同步练习册答案