精英家教网 > 高中数学 > 题目详情

【题目】如图,圆

(Ⅰ)若圆C与x轴相切,求圆C的方程;

(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.

【答案】1;(2.

【解析】

试题分析:(1)联立直线与圆的方程,利用判别式为0得出值,即得圆的方程;(2)先求出,联立直线与圆的方程,利用根与系数的关系进行求解.

解题思路: 直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识..

试题解析:()因为

由题意得,所以

故所求圆C的方程为

)令,得

所以

假设存在实数

当直线AB轴不垂直时,设直线AB的方程为

代入得,

从而

因为

因为,所以,即,得

当直线AB轴垂直时,也成立.

故存在,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知O内一点,若分别满足①;②;③;④(其中中,角所对的边).O依次是的( )

A.内心、重心、垂心、外心B.外心、垂心、重心、内心

C.外心、内心、重心、垂心D.内心、垂心、外心、重心

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:112358,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列称为斐波那契数列. 并将数列中的各项除以4所得余数按原顺序构成的数列记为,则下列结论正确的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某贫困地区截至2018年底,按照农村家庭人均年纯收入8000元的小康标准,该地区仅剩部分家庭尚未实现小康.现从这些尚未实现小康的家庭中随机抽取50户,得到这50户家庭2018年的家庭人均年纯收入的频率分布直方图.

1)补全频率分布直方图,并求出这50户家庭人均年纯收入的中位数和平均数(精确到元);

220197月,为估计该地能否在2020年全面实现小康,统计了该地当时最贫困的一个家庭201916月的人均月纯收入如表:

月份/2019(时间代码)

1

2

3

4

5

6

人居月纯收入 ()

275

365

415

450

470

485

由散点图及相关性分析发现:家庭人均月纯收入与时间代码之间具有较强的线性相关关系,请求出回归直线方程;并由此估计该家庭20201月的家庭人均月纯收入.

可能用到的数据:

参考公式:线性回归方程中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABEF和四边形ABCD均是直角梯形,∠FAB=∠DAB=90°,二面角FABD是直二面角,BEAFBCADAFABBC=2,AD=1.

(1)证明:在平面BCE上,一定存在过点C的直线l与直线DF平行;

(2)求二面角FCDA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标。分值权重表如下:

总分

技术

商务

报价

100%

50%

10%

40%

技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的。报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分。若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分。在某次招标中,若基准价为1000(万元)。甲、乙两公司综合得分如下表:

公司

技术

商务

报价

80分

90分

70分

100分

甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是

A. 7375.4 B. 73,80 C. 74.6,76 D. 74.6 ,75.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB是圆O的直径,C是圆O上一点,AC=BC,且PA⊥平面ABCEAC的中点,FPB的中点,PA=AB=2.求:

(Ⅰ)异面直线EFBC所成的角;

(Ⅱ)点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中装有除颜色外其他均相同的编号为a,b的两个黑球和编号为c,d,e的三个红球,从中任意摸出两个球.

1)求恰好摸出1个黑球和1个红球的概率:

2)求至少摸出1个黑球的概率.

查看答案和解析>>

同步练习册答案