精英家教网 > 高中数学 > 题目详情
某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知其中AF是以A为顶点、AD为对称轴的抛物线段.试求该高科技工业园区的最大面积.

试题分析:求该高科技工业园区的最大面积,由梯形的面积公式须知PQ,PR,QE的长度,注意到点P在曲线AF上的动点,因此此题可建立直角坐标系求解,故以A为原点,AB所在的直线为x轴建立直角坐标系,从而得,而曲线AF是以A为定点,AD为对称轴的抛物线段,故利用AF求出抛物线的方程,利用EC求出直线EC的方程,设出P点的坐标为,从而得出PQ,PR,PE的长度,由梯形的面积公式,得出工业园区的面积 ,由于是三次函数,需用求导来求最大值,从而解出高科技工业园区的最大面积是.
试题解析:以A为原点,AB所在直线为x轴建立直角坐标系如图,则…(2分)
由题意可设抛物线段所在抛物线的方程为,由得,
∴AF所在抛物线的方程为,   (5分)
,∴EC所在直线的方程为
,则,   (9分)
∴工业园区的面积,   (12分)
(舍去负值)   ,   (13分)
变化时,的变化情况可知,当时,取得最大值
答:该高科技工业园区的最大面积
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)已知函数f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求实数t的取值范围;
(2)证明:<ln,其中0<a<b;
(3)设[x]表示不超过x的最大整数,证明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若函数有两个极值点),求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,试证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个球的体积、表面积分别为VS,若函数Vf(S),f′(S)是f(S)的导函数,则f′(π)=(  )
A.B.C.1D.π

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=xln xg(x)=x3ax2x+2.
(1)求函数f(x)的单调区间;
(2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-aln xx(a≠0),
(1)若曲线yf(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的导数      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为R上的可导函数,当时,,则函数的零点分数为(  )
A.1B.2C.0D.0或2

查看答案和解析>>

同步练习册答案