精英家教网 > 高中数学 > 题目详情
求不等式
x-2x+1
≤0
的解集.
分析:
x-2
x+1
≤0
?
(x-2)(x+1)≤0
x+1≠0
,即可得出.
解答:解:由
x-2
x+1
≤0
(x-2)(x+1)≤0
x+1≠0
,解得-1<x≤2.
∴不等式的解集为{x|-1<x≤2}.
点评:本题考查了分式不等式的等价转化和一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记关于x的不等式|x-a|<2的解集为A,不等式
x-2x+1
>0
的解集为B.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R上的奇函数.
(1)求k的值.
(2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0试求不等式f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=
32
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)
上的最小值为-2,求m.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

记关于x的不等式|x-a|<2的解集为A,不等式
x-2
x+1
>0
的解集为B.
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案