【题目】网格纸的各小格都是边长为1的正方形,图中粗实线画出的是一个几何体的三视图,其中正视图是正三角形,则该几何体的外接球表面积为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象在[a,b]上连续不断,定义:
f1(x)=min{f(t)| a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)| a≤t≤x}(x∈[a,b])。
其中,min{f(x)| x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值。若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”。
(1)若f(x)=sinx,x∈[, ],请直接写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=(x-1)2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机卖场对市民进行华为手机认可度的调查,随机抽取200名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:
(1)求频率分布表中的值,并补全频率分布直方图;
(2)利用频率分布直方图估计被抽查市民的平均年龄
(3)从年龄在, 的被抽查者中利用分层抽样选取10人参加华为手机用户体验问卷调查,再从这10人中选出2人,求这2人在不同的年龄组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,a,b,c为角A,B,C所对的边,且2cos2 +(cosB﹣ sinB)cosA=1.
(1)求角A的值;
(2)求f(x)=4cosxcos(x﹣A)在x∈[0, ]的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为的菱形, , 平面, , 是棱上的一个点, , 为的中点.
(1)证明: 平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市今年出现百年不遇的旱情,广大市民自觉地节约用水.市自来水厂观察某蓄水池供水情况以制定节水措施,发现某蓄水池中有水450吨,水厂每小时可向蓄水池中注水80吨,同时蓄水池又向居民小区供水,t小时内供水量为吨,现在开始向水池注水并向居民小区供水.
(1)请将蓄水池中存水量S表示为时间t的函数;
(2)问开始蓄水后几小时存水量最少?
(3)若蓄水池中水量少于150吨时,就会出现供水量紧张现象,问每天有几小时供水紧张?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com