精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=4x-m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为(  )
A.(-2,2)B.(6,+∞)C.(2,6)D.(2,+∞)

分析 利用换元法,问题转化为函数f(t)=t2-mt+m+3有两个不同的零点,且大于1,建立不等式,即可求出实数m的取值范围.

解答 解:设t=2x,∵x1+x2>0,x1x2>0,∴t>1,
∴函数f(t)=t2-mt+m+3有两个不同的零点,且大于1,
∴$\left\{\begin{array}{l}{{m}^{2}-4m-12>0}\\{\frac{m}{2}>1}\\{1-m+m+3>0}\end{array}\right.$,∴m>6,
故选:B.

点评 本题考查函数的零点,考查方程根的讨论,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.化简下列各式:
(1)$\frac{{a}^{\frac{2}{3}}\sqrt{b}}{{a}^{-\frac{1}{2}}\root{3}{b}}$•($\frac{{a}^{-1}\sqrt{{b}^{-1}}}{b\sqrt{a}}$)${\;}^{\frac{3}{2}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4{b}^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{b}{a}}$)$•\root{3}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}中,a1=2,an+1-an-2n-2=0(n∈N*),则数列{an}的通项公式为an=n2+n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)是定义在(-2,2)上的单调递增的奇函数,若f(a-2)+f(2a-1)≥0,则实数a的值范围是[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.抛物线y2=4x与过点A(-1,-6)的直线l交于P,Q两点,若以PQ为直径的圆过抛物线的顶点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an},{bn}的通项分别为an=1n(1+$\frac{1}{n}$),bn=$\frac{1}{n}$-$\frac{1}{{n}^{2}}$(n∈N*),证明:an>bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知log1227=a,试用a表示log616;
(2)已知log23=a,3b=7.试用a,b表示log1256.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.【理】设f(x)是定义在R上以6为周期的函数,f(x)在(0,3)内单调递减,且y=f(x)的图象关于直线x=3对称,则下面正确的结论是(  )
A.f(7.5)<f(3.5)<f(6.5)B.f(3.5)<f(7.5)<f(6.5)C.f(6.5)<f(3.5)<f(7.5)D.f(3.5)<f(6.5)<f(7.5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=$\sqrt{{x}^{2}+1}$+$\sqrt{{x}^{2}-4x+8}$的最小值是(  )
A.0B.$\sqrt{13}$C.13D.不存在

查看答案和解析>>

同步练习册答案