精英家教网 > 高中数学 > 题目详情
函数f(x)=
4-x
x-1
+log2(x+1)的定义域是
 
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据二次根式的性质,对数函数的性质,得到不等式组,解出即可.
解答: 解:由题意得:
4-x≥0
x-1≠0
x+1>0
,解得:-1<x≤4且x≠1,
故答案为:{x|-1<x≤4且x≠1}.
点评:本题考查了函数的定义域问题,考查了二次根式,对数函数的性质,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A、B、C是三个集合,则“A=B”是A∩C=B∩C的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,则
2cos(α-
π
2
)sin(
π
2
-α)+sin(
2
-α)
1+sin(π+α)+sin2(α-π)-sin2(α-
π
2
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=R,集合A={x|1≤x≤3},B={x|x>2},则A∩∁UB等于(  )
A、{x|1<x≤2}
B、{x|1≤x<2}
C、{x|1≤x≤2}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=
1-x2
,x∈Z},B={y|y=x2+1,x∈A},那么A∪B=(  )
A、{1}
B、{-1,0,1,2}
C、[0,1]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在扇形OAB中,∠AOB=60°,C为弧AB上的一个动点.若
OC
=x
OA
+y
OB
,求x+3y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若M为△ABC的重心,点D,E,F分别为三边BC,AB,AC的中点,则
MA
+
MB
+
MC
等于(  )
A、6
ME
B、-6
MF
C、
0
D、6
MD

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+bx(a,b∈R)在x=
1
2
处取得极值,且曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.
(1)求实数a、b的值;
(2)若对任意x∈[1,+∞),不等式f(x)≤(m-2)x-
m
x
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,an+1=an+2(n∈N*),a2,a5,a14构成等比数列.记bn=
1
anan+1
(n∈N*)
(1)数列{an}的通项公式;
(Ⅱ)设{bn}的前n项和为Rn.是否存在正整数k,使得Rk≥2k成立?若存在,找出一个正整数k;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案