精英家教网 > 高中数学 > 题目详情
7.在直角坐标系xOy中,已知点P(1,-2),直线$l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$( t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,直线l和曲线C的交点为A、B.
(1)求直线l和曲线C的普通方程;
(2)求|PA|+|PB|的值.

分析 (1)利用三种坐标的互化方法,求直线l和曲线C的普通方程;
(2)将直线l的标准参数方程代入曲线C:y2=2x中,得t2-6$\sqrt{2}$t+4=0,利用参数的几何意义求|PA|+|PB|的值.

解答 解:(1)直线$l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$( t为参数),消去t,可得直线l的普通方程为x-y-3=0;
曲线C的极坐标方程为ρsin2θ=2cosθ,即为ρ2sin2θ=2ρcosθ,
由x=ρcosθ,y=ρsinθ,可得曲线C的普通方程为 y2=2x;
(2)将直线l的标准参数方程代入曲线C:y2=2x中,
可得t2-6$\sqrt{2}$t+4=0,即有t1+t2=6$\sqrt{2}$,t1t2=4,由于t1>0,t2>0
则|PA|+|PB|=|t1|+|t2|=t1+t2=$6\sqrt{2}$.

点评 本题考查三种方程的互化,考查参数几何意义的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}-2{x^2}-4x+1,\;\;x≤0\\ x+1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;x>0.\end{array}\right.$
(1)计算f(f(${log_2}\frac{1}{4}$))的值;
(2)讨论函数f(x)的单调性,并写出f(x)的单调区间;
(3)设函数g(x)=f(x)+c,若函数g(x)有三个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为03,则剩下的四个号码依次是15,27,39,51.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知中心在原点,焦点在坐标轴上的椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{{\sqrt{3}}}{3}$,一个焦点是(-1,0),过直线x=3上一点M引椭圆E的两条切线,切点分别是A和B.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若在椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点,并求出定点的坐标;
(Ⅲ)记点C为(Ⅱ)中直线AB恒过的定点,问是否存在实数λ,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立,若成立求出λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={x||x-1|<2},B={x|$\frac{1}{9}$<3x<9},则A∩B=(  )
A.(-1,3)B.(-1,2)C.(-2,2)D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某校高一年级1000名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米到195厘米之间,将测量结果分为八组:第一组[155,160),第二组[160,165),…,第八组[190,195),得到频率分布直方图如图所示.
(Ⅰ)计算第三组的样本数;并估计该校高一年级1000名学生中身高在170厘米以下的人数;
(Ⅱ)估计被随机抽取的这100名学生身高的中位数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某几何体的三视图且a=b,则该几何体主视图的面积为(  )
A.$\sqrt{6}$B.$\frac{3}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,圆锥的轴截面SAB是正三角形,O为底面中心,M为线段SO中点,动点P在圆锥底面内(包括圆周),若AM⊥MP,则点P的轨迹为(  )
A.线段B.C.椭圆D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知曲线C1:y2=tx(y>0,t>0)在点M($\frac{4}{t}$,2)处的切线与曲线C2:y=ex+1-1也相切,则tln$\frac{4{e}^{2}}{t}$的值为(  )
A.4e2B.8eC.2D.8

查看答案和解析>>

同步练习册答案