精英家教网 > 高中数学 > 题目详情
[理]如图,在正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB内一点,
HC1
={2m,-2m,-m}(m<0)

(1)证明HC1⊥平面EDB;
(2)求BC1与平面EDB所成的角;
(3)若正方体的棱长为a,求三棱锥A-EDB的体积.
[文]若数列{an}的通项公式an=
1
(n+1)2
(n∈N+)
,记f(n)=(1-a1)(1-a2)…(1-an).
(1)计算f(1),f(2),f(3)的值;
(2)由(1)推测f(n)的表达式;
(3)证明(2)中你的结论.
[理](1)设正方体的棱长为a,
DE
={
a
2
,0,a}
DB
={a,a,0}

HC1
DE
=0,
HC1
DB
=0

HC1
DE
HC1
DB
,又DE∩DB=D,
∴HC1⊥平面EDB.
(2)
BC1
={-a,0,a}

BC1
HC1
所成的角为θ,
cosθ=
BC1
HC1
|
BC1
|•|
HC1
|
=
2ma+ma
2
a•3m
=
2
2

∴θ=45°.
由(1)知HC1⊥平面EDB,
∴∠C1BH为BC1与平面EDB所成的角.
∠C1BH=90°-45°=45°.
(3)VA-EDB=VE-ABD=
1
3
1
2
a2•a=
1
6
a3

[文](1)a1=
1
4
,a2=
1
9
,a3=
1
16
,a4=
1
25
f(1)=1-a1=
3
4
f(2)=(1-a1)(1-a2)=
2
3

f(3)=(1-a1)(1-a2)(1-a3)=
5
8
,f(4)=(1-a1)(1-a2)(1-a3)(1-a4)=
3
5

(2)故猜想f(n)=
n+2
2(n+1)
(n∈N*)

(3)证明:1-an=1-
1
(n+1)2
=
n2+2n
(n+1)2
=
n+2
n+1
n
n+1

1-an-1=
n+1
n
n-1
n

1-an-2=
n
n-1
n-2
n-1

1-an-3=
n-1
n-2
n-3
n-2
1-a3=
5
4
3
4

1-a2=
4
3
2
3

1-a1=
3
2
1
2

将上述n个因式相乘得:(1-a1)(1-a2)(1-an)=
n+2
n+1
1
2
=
n+2
2(n+1)

即f(n)=
n+2
2(n+1)
(n∈N*)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图02,在长方体ABCDA1B1C1D1中,PQR分别是棱AA1BB1BC上的点,PQABC1QPR,求证:∠D1QR=90°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AB=2,AD=1,AA1=
2
,E、F分别是AB、CD的中点
(1)求证:D1E⊥平面AB1F;
(2)求直线AB与平面AB1F所成的角;
(3)求二面角A-B1F-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=
1
2
AB=1,N为AB上一点,AB=4AN,M、S分别为PB、BC的中点.
(Ⅰ)求证:CM⊥SN;
(Ⅱ)求二面角P-CB-A的余弦值;
(Ⅲ)求直线SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面为菱形且∠DAB=60°,PA⊥底面ABCD,AB=2,PA=2
3
,E为PC的中点.
(1)求直线DE与平面PAC所成角的大小;
(2)求C点到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(
3
2
1
2
,0
),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.
(I)求向量
OD
的坐标;
(Ⅱ)设向量
AD
BC
的夹角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,PA=AB=BC=AC,E是PC的中点.
(1)求证:PD⊥平面ABE;
(2)求二面角A-PD-C的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,ABCD为正方形,,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求证:面EFG⊥面PAB;
(2)求异面直线EG与BD所成的角的余弦值;
(3)求点A到面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是( ).
A.方向相同或相反的向量是平行向量
B.零向量是
C.长度相等的向量叫做相等向量
D.共线向量是在一条直线上的向量

查看答案和解析>>

同步练习册答案