精英家教网 > 高中数学 > 题目详情
9.设f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$,g(x)=$\frac{\sqrt{2x+1}}{x-1}$,则f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞).

分析 求出已知中两个函数的定义域,化简两函数乘积后,可得答案.

解答 解:∵f(x)=$\frac{{x}^{2}-x}{\sqrt{2x+1}}$的定义域为[-$\frac{1}{2}$,+∞),
g(x)=$\frac{\sqrt{2x+1}}{x-1}$的定义域为(-∞,1)∪(1,+∞),
∴f(x)•g(x)=x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞),
故答案为:x+1,x∈[-$\frac{1}{2}$,1)∪(1,+∞)

点评 本题考查的知识点是函数的解析式的求解,代数式的化简,要注意最终结果受两个函数定义域的限制.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{x-1}{lg(x+1)}$的定义域为(  )
A.(-1,+∞)B.(-1,1)∪(1,+∞)C.(-1,0)∪(0,+∞)D.(-1,0)∪(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式x2-2x-3<0的解集为(  )
A.{x|-1<x<3}B.C.RD.{x|-3<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow{a}$在基底{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$}下可以表示为$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,若a在基底{$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$}下可表示为$\overrightarrow{a}$=λ($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)+μ($\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$),则λ=$\frac{5}{2}$,μ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x∈R+,函数f($\frac{1}{x}$)=-f(x),f($\frac{2}{x}$)=-f(2x),若x∈[1,2]时,f(x)=(x-1)(x-2),则函数y=f(x)+$\frac{1}{4}$在区间[1,100]内零点的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C的方程为:x2+y2-2x-4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y-6=0交于M、N两点,且|MN|=2$\sqrt{3}$,求m的值;
(3)设直线x-y-1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:GH∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,点A(3,0),点P在椭圆C上.求|PA|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面积ABCD为矩形,PA⊥平向ABCD,E为PD的中点,AB=AP=1,AD=$\sqrt{3}$,试建立恰当的空间直角坐标系,试求直线PC的一个法向量和平面PCD的一个法向量.

查看答案和解析>>

同步练习册答案