精英家教网 > 高中数学 > 题目详情
已知△ABC的三边长分别为AB=8,BC=7,AC=3,以点A为圆心,r=2为半径作一个圆,设PQ为⊙A的任意一条直径,记T=
BP
CQ
,求T
的最大值和最小值,并证明当T取最大值和最小值时,PQ的位置特征是什么.
分析:本题考查的知识点是平面向量的数量积运算,由AB=8,BC=7,AC=3,以点A为圆心,r=2为半径作一个圆,设PQ为圆A的任意一条直径,我们易得T=8+
AP
CB
,又由|
AP
|=2,|
BC
|=7
,我们可得当
AP
CB
同向时,T取最大值.当
AP
CB
反向时,T取最小值.
解答:解:T=
BP
CQ
AP
CB

=(
BA
+
AP
)•(
CA
+
AQ
)

=(
BA
+
AP
)•(
CA
-
AP
)

=
BA
CA
+
AP
•(
CA
-
BA
)-
AP
2

=8+
AP
•(
CA
-
BA
)

=8+
AP
CB

|
AP
|=2,|
BC
|=7

故T的最大值为22,T的最小值为-6
此时PQ与BC平行.
点评:如果两个非量平面向量平行(共线),则它们的方向相同或相反,此时他们的夹角为0或π.当它们同向时,夹角为0,此时向量的数量积,等于他们模的积,有最大值;当它们反向时,夹角为π,此时向量的数量积,等于他们模的积的相反数,有最小值.如果两个向量垂直,则它们的夹角为π2,此时向量的数量积,等于0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=
2Sa+b+c
.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长a,b,c满足b+2c≤3a,c+2a≤3b,则
ba
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为a、b、c,满足直线ax+by+c=0与圆x2+y2=1相离,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为三个连续的正整数,且最大角为钝角,则最长边长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则
CP
•(
BA
-
BC
)
的最大值为
 

查看答案和解析>>

同步练习册答案