精英家教网 > 高中数学 > 题目详情

【题目】某县共有90间农村淘宝服务站,随机抽取5间,统计元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.若网购金额(单位:万元)不小于18的服务站定义为优秀服务站,其余为非优秀服务站.从随机抽取的5间服务站中再任取2间作网购商品的调查,则恰有1间是优秀服务站的概率为_____

【答案】

【解析】

优秀服务站有2个,非优秀服务站有3个,从随机抽取的5间服务站中再任取2间作网购商品的调查,基本事件总数,恰有1间是优秀服务站包含的基本事件个数,由此能求出恰有1间是优秀服务站的概率.

解:由茎叶图得从随机抽取的5间服务站中,

优秀服务站有2个,非优秀服务站有3个,

从随机抽取的5间服务站中再任取2间作网购商品的调查,

基本事件总数n10

恰有1间是优秀服务站包含的基本事件个数m6

则恰有1间是优秀服务站的概率P

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知为抛物线上两点,为抛物线焦点.分别过作抛物线的切线交于点.

(1)若,求

(2)若分别交轴于两点,试问的外接圆是否过定点?若是,求出该定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的顶点为A,焦点为F.F作直线l与抛物线交于点P、Q,直线AP、AQ分别与抛物线的准线交于点M、N.问:直线l满足什么条件时,三直线PN、QM、AF恒交于一点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.

方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.

方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.

(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;

(2)若某顾客获得抽奖机会.

①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;

②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,点在平面内运动,使得二面角的平面角与二面角的平面角互余,则点的轨迹是( )

A. 一段圆弧 B. 椭圆的一部分 C. 抛物线 D. 双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆在左右焦点分别为动点在椭圆的周长为6,且面积的最大值为.

(1)求的方程

(2)设直线的另一个交点为分别作直线的垂线垂足为轴的交点为.的面积成等差数列求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(

A.已知随机变量,若.

B.已知分类变量的随机变量的观察值为,则当的值越大时,有关的可信度越小.

C.在线性回归模型中,计算其相关指数,则可以理解为:解析变量对预报变量的贡献率约为

D.若对于变量组统计数据的线性回归模型中,相关指数.又知残差平方和为.那么.(注意:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,天花板上挂着3串玻璃球,射击玻璃球规则:每次击中1球,每串中下面球没击中,上面球不能击中,则把这6个球全部击中射击方法数是(

A.78B.60C.48D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若,则的最小值为__________;若,则的最大值为__________

查看答案和解析>>

同步练习册答案