精英家教网 > 高中数学 > 题目详情

【题目】已知奇函数fx,函数gθ)=cos2θ+2sinθθ[m]mbR

1)求b的值;

2)判断函数fx)在[01]上的单调性,并证明;

3)当x[01]时,函数gθ)的最小值恰为fx)的最大值,求m的取值范围.

【答案】1b0;(2)在[01]上的单调递增,证明见解析;(3

【解析】

1)根据函数fx为奇函数,令f0)=0求解.

2)函数fx)在[01]上的单调递增,再利用函数的单调性定义证明.

3)根据(2)知,函数fx)在[01]上的单调递增,得到.即gθ)的最小值为,再令tsinθ,转化为二次函数求解.

1)因为函数fxR上的奇函数,

所以f0)=0,解得b0

2)函数fx)在[01]上的单调递增.

证明:设

则:fx2)﹣fx1

因为

所以x2x101x1x20

所以

fx2 fx1),

所以函数fx)在[01]上的单调递增.

3)由(2)得:函数fx)在[01]上的单调递增,

所以.所以gθ)的最小值为

tsinθ,所以y的最小值为

解得

所以

所以

又因为θ[m]mbR

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某林场现有木材存量为,每年以25%的增长率逐年递增,但每年年底要砍伐的木材量为,经过年后林场木材存有量为

1)求的解析式

2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不应少于,如果,那么该地区会发生水土流失吗?若会,要经过几年?(取

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的最小值;

(2)当时,若存在,使得对任意的,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作已知直线的平行线,交双曲线于点.

(1)证明:Q是线段MN的中点;

(2)分别过点M、N作双曲线的切线,证明:三条直线相交于同一点;

(3)设为直线上一动点,过作双曲线的切线,切点分别为,证明:点Q在直线AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处有相同的切线,求函数的极值;

2)若,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验两种不同的课堂教学模式对学生的成绩是否有影响,现从高二年级的甲(实行的问题——探究式)、乙(实行的自学——指导式)两个班中每班任意抽取20名学生进行测试,他们的成绩(总分150分)分布茎叶图如图所示(以十位百位为茎,个位为叶):

1)若从参与测试的学生试卷中挑选2份卷面分数为90~100分的试着进行卷面分析,求抽取的2份试卷恰好每班1份的概率?

2)记成绩在120分以上(包括120分)为优秀,其他的成绩为一般,请完成下面列联表,并分析是否有足够的把握(90%以上)认为这两种课堂教学模式对学生的成绩有影响?

成绩

班级

优秀人数

一般人数

总计

甲班

乙班

总计

附:

050

040

025

015

010

005

0025

0010

0005

0001

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中)的部分图象如图所示,把函数的图像向右平移个单位长度,再向下平移个单位,得到函数的图像。

(1)当时,若方程恰好有两个不同的根,求的取值范围及的值;

(2)令,若对任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站20181-8月促销费用(万元)和产品销量(万件)的具体数据:

月份

1

2

3

4

5

6

7

8

促销费用

2

3

6

10

13

21

15

18

产品销量

1

1

2

3

3.5

5

4

4.5

1)根据数据绘制的散点图能够看出可用线性回归模型的关系,请用相关系数加以说明(系数精确到0.001);

2)建立关于的线性回归方程(系数精确到0.001);如果该公司计划在9月份实现产品销量超6万件,预测至少需要投入费用多少万元(结果精确到0.01).

参考数据:,其中分别为第个月的促销费用和产品销量,

参考公式:(1)样本相关系数

2)对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的单调区间;

(2)当时,的图象恒在的图象上方,求a的取值范围.

查看答案和解析>>

同步练习册答案