精英家教网 > 高中数学 > 题目详情
6.(文)集合A={x|$\frac{x+3}{2-x}$≥1},函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{x-a-1}{x-a}$的定义域为集合B.
(1)求集合A和B;
(2)若A?B,求实数a的取值范围.

分析 (1)移项,利用二次不等式的解法,求出A,利用真数大于0,求出B;
(2)根据A?B,建立不等式,求实数a的取值范围.

解答 解:(1)由$\frac{x+3}{2-x}$≥1,可得$\frac{2x+1}{2-x}$≥0,∴-$\frac{1}{2}$≤x<2,
∴A=[-$\frac{1}{2}$,2);
由$\frac{x-a-1}{x-a}$>0,可得x<a或x>a+1,
∴B=(-∞,a)∪(a+1,+∞);
(2)∵A?B,
∴a≥2或a+1<-$\frac{1}{2}$,
∴a≥2或a<-$\frac{3}{2}$.

点评 本题考查不等式的解法,考查集合之间的关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.满足不等式|$\frac{1}{lo{g}_{2}x}$-1|>$\frac{3}{2}$的x的范围是($\frac{1}{4}$,1)∪(1,$\root{5}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设D是△ABC所在平面内一点,且$\overrightarrow{BC}=3\overrightarrow{CD}$,设$\overrightarrow{AD}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)为定义在区间(-∞,0)∪(0,+∞)上的偶函数,当x∈(0,+∞)时,f(x)=log2x.
(1)求当x∈(-∞,0)时,函数f(x)的解析式.
(2)在给出的坐标系中画出函数f(x)的图象,写出函数f(x)的单调区间,并指出单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)${log_5}125+lg\frac{1}{1000}+ln\root{3}{e}+{2^{-{{log}_2}3}}$
(2)${(\frac{81}{16})^{0.5}}+{(-4)^{-1}}÷{0.75^{-2}}-{(2\frac{10}{27})^{-\;\frac{2}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,已知曲线${C_1}:\left\{\begin{array}{l}x\;=cosα\\ y=si{n^2}α\end{array}\right.$(α为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2sinθ.
(l)求曲线C1与C2的交点M的直角坐标;
(2)设点A,B分别为曲线C2,C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在锐角三角形ABC中,已知A=2C,则$\frac{a}{c}$的范围是(  )
A.(0,2)B.($\sqrt{2}$,2)C.($\sqrt{2}$,$\sqrt{3}$)D.($\sqrt{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$θ∈(-\frac{π}{2},0)$,且$tanθ=-\frac{3}{4}$,则cosθ=$\frac{4}{5}$;sin2θ=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.能够把圆M:x2+y2=1的周长和面积同时等分的函数称为圆M的“八封函数”,下列不是圆M的“八封函数”的是(  )
A.y=sinxB.y=tanxC.y=$\frac{1}{2}$x2-$\frac{1}{2}$D.y=x3-x

查看答案和解析>>

同步练习册答案