精英家教网 > 高中数学 > 题目详情

已知平面内两点(-1,1),(1,3).
(Ⅰ)求过两点的直线方程;
(Ⅱ)求过两点且圆心在轴上的圆的方程.

(Ⅰ) ;(Ⅱ)

解析试题分析:(Ⅰ)可用两点式直接求直线方程,也可先求斜率再用点斜式求直线方程。(Ⅱ)可用直接法求圆心和半径,因为弦的中垂线过圆心,又因为圆心在轴上从而确定圆心,再用两点间距离公式求半径;还可以用待定系数法求圆的方程,本题设圆的标准方程较好,再根据已知条件3个列出方程,解方程组即可求出未知量,从而得圆的方程。
试题解析:解:(Ⅰ), 2分
所以直线的方程为
.4分
(Ⅱ)因为的中点坐标为的中垂线为
又因为圆心在轴上,解得圆心为,6分
半径, 8分
所以圆的方程为 .10分
考点:直线方程及圆的方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系.
(2)求线段PQ长的最小值.
(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为为参数),圆的极坐标方程为.
(1)若圆关于直线对称,求的值;
(2)若圆与直线相切,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为2,圆心在直线上的圆C.
(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C经过A(1,1)、B(2,)两点,且圆心C在直线l:x-y+1=0上,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动点到定点与到定点的距离之比为.
(1)求动点的轨迹C的方程,并指明曲线C的轨迹;
(2)设直线,若曲线C上恰有三个点到直线的距离为1,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线
(1)判断直线与圆C的位置关系;
(2)设与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB为,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线在极坐标系中的方程为,圆C在极坐标系中的方程为,求圆C被直线截得的弦长.

查看答案和解析>>

同步练习册答案