精英家教网 > 高中数学 > 题目详情
已知点A,B的坐标分别为(-2,3,5)与 (1,-1,-7),则向量
AB
的相反向量的坐标是(  )
分析:先求出向量
AB
,进而利用相反向量的意义即可得出.
解答:解:∵点A,B的坐标分别为(-2,3,5)与 (1,-1,-7),
AB
=
OB
-
OA
=(1,-1,-7)-(-2,3,5)=(3,-4,-12).
-
AB
=-(3,-4,-12)=(-3,4,12).
故选A.
点评:熟练掌握向量坐标的计算方法和相反向量的意义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积-
12

(1)求点M轨迹C的方程;
(2)若过点D(2,0)的直线l与(1)中的轨迹C交于不同的两点D、F(E在D、F之间),试求△ODE与△ODF面积之比的取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【理科生做】已知点A、B的坐标分别是(0,-1),(0,1),直线AM、BM相交于点M,且它们的斜率之积为-1.
(1)求点M轨迹C的方程;
(2)若过点(2,0)且斜率为k的直线l与(1)中的轨迹C交于不同的两点E、F(E在D、F之间),记△ODE与△ODF面积之比为λ,求关于λ和k的关系式,并求出λ取值范围(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(-1,0),(1,0),直线AM与BM相交于点M,且直线AM的斜率与BM斜率之差是2,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A,B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且它们的斜率之积为-
1
2

(1)求点M的轨迹C的方程;
(2)过D(2,0)的直线l与轨迹C有两个不同的交点时,求l的斜率的取值范围;
(3)若过D(2,0),且斜率为
14
6
的直线l与(1)中的轨迹C交于不同的E、F(E在D、F之间),求△ODE与△ODF的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A、B的坐标分别是A(0,-1),B(0,1),直线AM、BM相交于点M,且它们的斜率之积是2,求点M的轨迹方程,并说明曲线的类型.

查看答案和解析>>

同步练习册答案