精英家教网 > 高中数学 > 题目详情
精英家教网已知四棱锥P-ABCD的底面ABCD是等腰梯形,AD∥BC,且BC=2AB=2AD=2,侧面PAD为等边三角形,PB=PC=
2

(1)求证:PC⊥平面PAB;(2)求四棱锥P-ABCD的体积.
分析:(1)利用勾股定理证明 PC⊥PA,PC⊥PB,再利用直线与平面垂直的判定定理 证明 PC⊥面PAB.
(2)在等腰梯形ABCD中,易知 S△ADC:S△ABC=1:2,利用 VP-ABCD=
3
2
VP-ABC
,且 VP-ABC=VC-PAB,求得VP-ABCD的值.
解答:精英家教网解:(1)证明:在等腰梯形ABCD中,AB=AD=1,BC=2,
∴∠ABC=60°,AC=
3
,AC⊥AB.
在△PAC中,PA=1,AC=
3
,PC=
2
,∴PC⊥PA.
在△PBC中,∵PB=PC=
2
,故 PB2+PC2=BC2,∴PC⊥PB.
又 PA∩PB=P,∴PC⊥面PAB.
(2)在等腰梯形ABCD中,易知 S△ADC:S△ABC=1:2,
∴VP-ABC=2VP-ADC,∴VP-ABCD=
3
2
VP-ABC

又 VP-ABC=VC-PAB=
1
3
1
2
AB•AP•PC=
1
3
×
1
2
×1×1×
2
=
2
6

∴VP-ABCD=
3
2
VP-ABC
=
3
2
×
2
6
=
2
4
点评:本题考查证明线面垂直的方法,直线与平面垂直的判定定理的应用,根据题意得到VP-ABCD=
3
2
VP-ABC
,且VP-ABC=VC-PAB,是解题的难点和关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案