【题目】如果数列对于任意,都有,其中为常数,则称数列是“间等差数列”,为“间公差”.若数列满足,,.
(1)求证:数列是“间等差数列”,并求间公差;
(2)设为数列的前n项和,若的最小值为-153,求实数的取值范围;
(3)类似地:非零数列对于任意,都有,其中为常数,则称数列是“间等比数列”,为“间公比”.已知数列中,满足,,,试问数列是否为“间等比数列”,若是,求最大的整数使得对于任意,都有;若不是,说明理由.
【答案】(1)见解析;(2);(3)63.
【解析】
(1)直接利用定义求出数列为间等差数列.
(2)利用分类讨论思想,利用数列的前n项和公式求出数列的和,进一步利用不等量关系求出结果.
(3)利用分类讨论思想,进一步求出数列的通项公式,再利用函数的单调性求出k的最大值.
(1)若数列{an}满足an+an+1=2n﹣35,n∈N*,则:an+1+an+2=2(n+1)﹣35,
两式相减得:an+2﹣an=2.故数列{an}是“间等差数列”,公差d=2.
(2)(i)当n=2k时,
(a1+a2)+(a3+a4)+…+(an﹣1+an)=﹣33﹣29+…+(2n﹣37)=
易知:当n=18时,最小值S18=﹣153.
(ii)当n=2k+1时,
Sn=a1+(a2+a3)+(a4+a5)+…+(an﹣1+an)=a1+(﹣31)+(﹣29)+…+(2n﹣37)=,
当n=17时最小,其最小值为S17=a﹣136,要使其最小值为﹣153,
则:a﹣136≥﹣153,解得:a≥﹣17.
(3)易知:cncn+1=2018()n﹣1,则:cn+1cn+2=2018()n,
两式相除得:,故数列{cn}为“间等比数列”,其间等比为.,
易求出数列的通项公式为:,
由于n>n+1,则数列{n}单调递减.那么,奇数项和偶数项都为单调递减,所以:k>0.
要使数列为单调递减数列.只需2m﹣1>2m>2m+1,
即:,
解得,即最大的整数.
科目:高中数学 来源: 题型:
【题目】某景区欲建两条圆形观景步道(宽度忽略不计),如图所示,已知,(单位:米),要求圆M与分别相切于点B,D,圆与分别相切于点C,D.
(1)若,求圆的半径;(结果精确到0.1米)
(2)若观景步道的造价分别为每米0.8千元与每米0.9千元,则当多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若满足为上奇函数且为上偶函数,求的值;
(2)若函数满足对恒成立,函数,求证:函数是周期函数,并写出的一个正周期;
(3)对于函数,,若对恒成立,则称函数是“广义周期函数”, 是其一个广义周期,若二次函数的广义周期为(不恒成立),试利用广义周期函数定义证明:对任意的,,成立的充要条件是.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是某斜拉式大桥图片,为了了解桥的一些结构情况,学校数学兴趣小组将大桥的结构进行了简化,取其部分可抽象成图2所示的模型,其中桥塔、与桥面垂直,通过测量得知,,当为中点时,.
(1)求的长;
(2)试问在线段的何处时,达到最大.
图1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《上海市生活垃圾管理条例》于2019年7月1日正式实施,某小区全面实施垃圾分类处理,已知该小区每月垃圾分类处理量不超过300吨,每月垃圾分类处理成本(元)与每月分类处理量(吨)之间的函数关系式可近似表示为,而分类处理一吨垃圾小区也可以获得300元的收益.
(1)该小区每月分类处理多少吨垃圾,才能使得每吨垃圾分类处理的平均成本最低;
(2)要保证该小区每月的垃圾分类处理不亏损,每月的垃圾分类处理量应控制在什么范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记无穷数列的前项中最大值为,最小值为,令
(Ⅰ)若,请写出的值;
(Ⅱ)求证:“数列是等差数列”是“数列是等差数列”的充要条件;
(Ⅲ)若 ,求证:存在,使得,有
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com