精英家教网 > 高中数学 > 题目详情

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|数学公式-数学公式|=1,求△ABC周长l的取值范围.

解:(Ⅰ)在△ABC中,∵(2b-c)cosA=acosC,
由正弦定理有:2(sinB-sinC)cosA=sinAcosC,…(2分)
∴2sinBcosA=sin(A+C)=sinB,sinB(2cosA-1)=0,
∵0<B<π,∴sinB≠0,∴cosA=
∵0<A<π,
∴A=. …(6分)
(Ⅱ)由已知|-|=1,∴||=1,即a=1,
由正弦定理得:b==,c=,…(8分)
l=a+b+c=1+=1+
=1+2=1+2sin(B+). …(10分)
∵A=,∴B,∴B+,∴sin(B+)∈(],
故△ABC的周长l的取值范围是(2,3]. …(12分)
分析:(1)通过正弦定理以及三角形的内角和,求出SA的余弦值,然后求出A的大小.
(2)通过已知条件求出a的值,利用正弦定理求出b与c的值的表达式,利用周长以及两角和的正弦函数,集合B的范围求出△ABC周长l的取值范围.
点评:本题考查正弦定理的应用,两角和与差的三角函数的应用,考查转化思想,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对应的边长分别为a、b、c,且A、B、C成等差数列,b=
3
,则△ABC的外接圆半径为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对的边分别为a、b、c,设向量
m
=(b-c,c-a)
n
=(b, c+a)
,若向量
m
n
,则角A的大小为(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步练习册答案