精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别是内角A,B,C的对边,已知△ABC的面积S=$\frac{3\sqrt{3}}{4}$,c=$\sqrt{7}$,sin2A+sin2B-sin2C-sinAsinB=0.
(1)求角C;
(2)求a+b.

分析 (1)利用正弦定理化简已知的等式,得到三边的关系式,再利用余弦定理表示出cosC,把得到的三边关系式变形后代入求出cosC的值,根据C为三角形的内角,可求C的值;
(2)利用同角三角函数间的基本关系求出sinC的值,由三角形面积公式可求ab的值,利用余弦定理即可可求出a+b的值.

解答 解:(1)利用正弦定理化简sin2A+sin2B-sinAsinB=sin2C,
得:a2+b2-ab=c2,即a2+b2-c2=ab,
∴根据余弦定理得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∵C为三角形的内角,则解得:C=$\frac{π}{3}$.
(2)∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{3}}{2}$,
∵S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=$\frac{3\sqrt{3}}{4}$,解得ab=3,
则由余弦定理可得:c2=a2+b2-2abcosC,可得:7=a2+b2-ab=(a+b)2-3ab=(a+b)2-9.解得:a+b=4.

点评 此题考查了正弦、余弦定理,三角形的面积公式,以及同角三角函数间的基本关系,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.$\sqrt{l{g}^{2}98+4lg98+4}$=

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+lna3+…+lna20=50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程(1+λ)x+(2λ-1)y+(1-8λ)=0(λ∈R)过某定点,此定点的坐标是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+4a(x<1)}\\{(a-3)x+4a(x≥1)}\end{array}\right.$,满足对任意x1≠x2,都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是(  )
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.(0,1)D.[1,$\frac{4}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A、B、C成等差数列,b=$\sqrt{3}$,则△ABC的周长的最大值为(  )
A.3$+\sqrt{3}$B.2$+\sqrt{3}$C.1$+2\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.方程2x+x=2,log2x+x=2,2x=log2(-x)的根分别为a,b,c,则a,b,c的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线2x+2y+1=0,x+y+2=0之间的距离是$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案