精英家教网 > 高中数学 > 题目详情
17.${∫}_{0}^{\frac{π}{2}}$(cosx-sinx)dx=0.

分析 由题意可得${∫}_{0}^{\frac{π}{2}}$(cosx-sinx)dx=(sinx+cosx)${|}_{0}^{\frac{π}{2}}$,代值计算可得.

解答 解:计算可得${∫}_{0}^{\frac{π}{2}}$(cosx-sinx)dx
=(sinx+cosx)${|}_{0}^{\frac{π}{2}}$
=(sin$\frac{π}{2}$+cos$\frac{π}{2}$)-(sin0+cos0)
=1-1=0
故答案为:0.

点评 本题考查定积分,涉及三角函数的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知x+y+1=0,那么$\sqrt{(x+2{)^2}+{{(y+3)}^2}}$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1
(1)二面角A-B1C-A1的大小 
(2)平面A1DC1平面A1D1DA所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax2+bx+1,记f(x)的导数为f′(x).
(1)若曲线f(x)在点(1,f(1))处的切线斜率为-3,且x=2时y=f(x)有极值,求函数f(x)的解析式;
(2)在(1)的条件下,求函数f(x)在[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为($\frac{{a}^{2}}{2}$,$\frac{b}{2}$),且a2<$\frac{b}{2}$,则f(x)•g(x)>0的解集为(  )
A.(-$\frac{b}{2}$,-a2)∪(a2,$\frac{b}{2}$)B.(-$\frac{b}{2}$,a2)∪(-a2,$\frac{b}{2}$)C.(-$\frac{b}{2}$,-a2)∪(a2,b)D.(-b,-a2)∪(a2,$\frac{b}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义在非零实数集上的函数f(x)对任意非零实数x,y满足:f(xy)=f(x)+f(y),且当0<x<1时,f(x)<0.
(Ⅰ)求f(-1)及f(1)的值;
(Ⅱ)求证:f(x)是偶函数;
(Ⅲ)解不等式:f(2)+f(x2-$\frac{1}{2}$)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD,底面ABCD为正方形,平面PAD⊥平面ABCD,PA=$\sqrt{3}$,PD=1,AD=2,PH⊥AD交AD于H.
(1)若PA,PC的中点分别为M,N,求证:MN⊥PH.
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A(2,-1),B(-1,1),O为坐标原点,A,B,M三点共线,且O$\vec M=\frac{1}{3}$$O\vec A+λO\vec B$,则点M的坐标为(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列满足:a1=1,an+1=2an+1,则{an}的通项公式为(  )
A.an=2nB.an=2n-1C.an=2n+1D.an=2n+2

查看答案和解析>>

同步练习册答案