精英家教网 > 高中数学 > 题目详情
5.已知椭圆的中心在原点,焦点为F1(0,-2$\sqrt{2}$),F2(0,2$\sqrt{2}$),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆的方程;
(2)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标为-$\frac{1}{2}$,求直线l斜率的取值范围.

分析 (1)设椭圆的标准方程,由c,及离心率即可求得a值,则b2=a2-c2=1,即可求得椭圆方程;
(2)将直线方程代入椭圆方程,由韦达定理及中点坐标公式可知$\left\{\begin{array}{l}{△>0}\\{\frac{{x}_{1}+{x}_{2}}{2}=-\frac{1}{2}}\end{array}\right.$,即可求得直线l斜率的取值范围.

解答 解:(1)设椭圆方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0),由已知c=2$\sqrt{2}$,e=$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,
解得:a=3,则b2=a2-c2=1,
故所求方程为$\frac{{y}^{2}}{9}+{x}^{2}=1$;(6分)
(2)设直线l的方程为y=kx+t(k≠0),A(x1,y1),B(x2,y2),
代入椭圆方程$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{y}^{2}}{9}+{x}^{2}=1}\end{array}\right.$,整理得(k2+9)x2+2ktx+t2-9=0,
由韦达定理可知:x1+x2=-$\frac{2kt}{{k}^{2}+9}$,
由题意得$\left\{\begin{array}{l}{△>0}\\{\frac{{x}_{1}+{x}_{2}}{2}=-\frac{1}{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{4{k}^{2}{t}^{2}-4({k}^{2}+9)({t}^{2}-9)>0}\\{-\frac{2kt}{{k}^{2}+9}=-1}\end{array}\right.$,
解得:k>$\sqrt{3}$或k<-$\sqrt{3}$.
直线l斜率的取值范围(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞).(12分

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,中点坐标公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.写出三角函数诱导公式(一)~(六)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足a1+a2+a3=9,a2+a8=18,数列{bn}的前n项和为Sn,且满足Sn=2bn-2.
(1)求数列{an},{bn}的通项公式;
(2)数列{cn}满足${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=a-\frac{2}{{{2^x}+1}}({x∈R,a∈R})$.
(1)求证:f(x)在(-∞,+∞)上是增函数;
(2)设函数f(x)存在反函数f-1(x),且f(x)是奇函数,若方程f-1(x)=log2(x+t)有实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{x-y≤0}\\{2x-y≤4}\end{array}\right.$,则目标函数z=2x+3y的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的公比q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正四面体A-BCD中,所有棱长为1,E,F分别是AC,AD上的动点,求截面△BEF周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P是双曲线$\frac{x^2}{4}-\frac{y^2}{12}=1$上任意一点,则P到两渐近线距离的乘积是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点A(-3,0)作直线l与圆x2+y2-6y-16=0交于M,N两点,若|MN|=8,则l的方程为x=-3或y=0.

查看答案和解析>>

同步练习册答案