精英家教网 > 高中数学 > 题目详情

【题目】设全集,关于的不等式)的解集为.

1)求集合

2)设集合,若 中有且只有三个元素,求实数的取值范围.

【答案】(1)当时,;当时,

2.

【解析】

1)将不等式化简,结合绝对值的意义解不等式即可.

2)讨论两种情况下的情况.将集合B化简,结合正弦函数定义可求得集合B.再由 中有且只有三个元素可得关于的不等式组,解不等式即可求得的取值范围.

1)由

化简可得

,解集是

,

解得

所以解集是

综上所述, ,解集是;当, 解集是

2(i), ,不合题意;

(ii),

结合正弦的差角公式与余弦的差角公式展开化简可得

,

由正弦函数的性质,

,,所以

3个元素时,

满足

解不等式组可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合.

(1),求实数的值;

(2),求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是一个集合,是一个以的某些子集为元素的集合,且满足:(1属于属于;(2中任意多个元素的并集属于;(3中任意多个元素的交集属于,则称是集合上的一个拓补.已知集合,对于下面给出的四个集合

其中是集合上的拓补的集合的序号是______.(写出所有的拓补的集合的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中是自然对数的底数.

1)求函数在点处的切线方程;

2)若不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于自然数数组,如下定义该数组的极差:三个数的最大值与最小值的差.如果的极差,可实施如下操作:若中最大的数唯一,则把最大数减2,其余两个数各增加1;若中最大的数有两个,则把最大数各减1,第三个数加2,此为一次操作,操作结果记为,其级差为.,则继续对实施操作,实施次操作后的结果记为,其极差记为.例如:.

1)若,求的值;

2)已知的极差为,若时,恒有,求的所有可能取值;

3)若是以4为公比的正整数等比数列中的任意三项,求证:存在满足.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图1是由正方形,直角梯形,三角形组成的一个平面图形,其中,将其沿折起使得重合,连接,如图2.

(1)证明:图2中的四点共面,且平面平面

(2)求图2中的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市在开展创建全国文明城市活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)求出a的值;

2)若已从年龄较小的第12组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到人,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为,且椭圆经过点,与坐标轴不垂直的直线与椭圆交于两点.

1)求椭圆的标准方程;

2)若直线和直线的斜率之积为,求证:直线过定点;

3)若为椭圆上一点,且,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=()|x|,若函数g(x)=f(x1)+a(ex1+ex+1)存在最大值M,则实数a的取值范围为_____

查看答案和解析>>

同步练习册答案