精英家教网 > 高中数学 > 题目详情
已知命题p:方程x2+mx+1=0有两上不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R,若p∨q为真命题,p∧q为假命题,求m的取值范围.
分析:若命题p真,则有
△ =m2-4>0
-
m
2
<0
f(0)>0
,解得 m>2;若命题q真,则有判别式△′=[4(m-2)]2-16<0,解得 1<m<3.分命题p为真、命题q为假,以及命题p为假、命题q为真两种情况,分别求出m的取值范围,取并集即得所求.
解答:解:令f(x)=x2+mx+1,若命题p真,则有
△ =m2-4>0
-
m
2
<0
f(0)>0
,解得 m>2.
若命题q真,则有判别式△′=[4(m-2)]2-16<0,解得 1<m<3.
根据p∨q为真命题,p∧q为假命题,可得命题p和命题q一个为真,另一个为假.
当命题p为真、命题q为假时,m≥3.
当命题p为假、命题q为真时,1<m≤2.
综上可得,m的取值范围为[3,+∞)∪(1,2].
点评:本题主要考查一元二次方程根的分布与系数的关系,体现了转化、分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的负实根;q:方程mx2+(m-1)x+m=0无实根.若“p或q”为真,p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2+mx+1=0有两个不相等的负实数根;命题Q:函数f(x)=lg[4x2+(m-2)x+1]的定义域为实数集R,若P或Q为真,P且Q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:“方程x2+
y2m
=1表示焦点在y轴上的椭圆”;命题Q:“方程2x2-4x+m=0没有实数根”.若P∧Q假,P∨Q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:方程x2-2mx+m=0没有实数根;
命题Q:?x∈R,x2+mx+1≥0.
(1)写出命题Q的否定“¬Q”;
(2)如果“P∨Q”为真命题,“P∧Q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.
(1)若p为真命题,求m的取值范围;
(2)若q为真命题,求m的取值范围;
(3)若“p或q”为真命题,求m的取值范围.

查看答案和解析>>

同步练习册答案