精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是矩形,分别为的中点,,且

(1)证明:
(2)求二面角的余弦值。
(1)以D为坐标原点,射线DA,DC,DP分别为轴、轴、轴正半轴建立空间直角坐标系则D(0,0,0),A(,0,0),B(,1,0)(0,1,0)P(0,0,
所以,0,),·=0,所以MC⊥BD(2)

试题分析:(1)证明:因为PD⊥平面ABCD,
所以PD⊥DA,PD⊥DC,
在矩形ABCD中,AD⊥DC,
如图,以D为坐标原点,
射线DA,DC,DP分别为
轴、轴、
正半轴建立空间直角坐标系    4分
则D(0,0,0),A(,0,0),
B(,1,0)(0,1,0),
P(0,0,)     6分
所以,0,),  7分∵·=0,所以MC⊥BD          7分
(2)解:因为ME∥PD,所以ME⊥平面ABCD,ME⊥BD,又BD⊥MC,
所以BD⊥平面MCE,
所以CE⊥BD,又CE⊥PD,所以CE⊥平面PBD,       9分
由已知,所以平面PBD的法向量  10分
M为等腰直角三角形PAD斜边中点,所以DM⊥PA,
又CD⊥平面PAD,AB∥CD,所以AB⊥平面PAD,AB⊥DM,
所以DM⊥平面PAB,          11分
所以平面PAB的法向量(-,0,)      12分
设二面角A—PB—D的平面角为θ,
.
所以,二面角A—PB—D的余弦值为.        15分
点评:本题中充分利用DA,DC,DP两两垂直建立空间直角坐标系,将证明两线垂直转化为两直线的法向量垂直,将求二面角转化为求两个平面的法向量的夹角
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点.

(Ⅰ)求证:为等腰直角三角形;
(Ⅱ)求证:∥面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱中,平面,其垂足落在直线上.

(1)求证:
(2)若,,的中点,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是三棱柱的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,的中点.
          
(1)求证:∥平面
(2)设垂直于,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

⑴证明:平面平面
⑵当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两个不同的平面,是不同的直线,下列命题不正确的是
A.若
B.若
C.若
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中假命题是
A.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
B.垂直于同一条直线的两条直线相互垂直
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为

(1)求证:平面ABCD丄平面ADE;
(2)求四面体BADE的体积;
(3)试判断直线OB是否与平面CDE垂直,并请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且

(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。

查看答案和解析>>

同步练习册答案