精英家教网 > 高中数学 > 题目详情
8.已知i是虚数单位,若1+i=z(1-i),则z的虚部为(  )
A.-1B.-iC.iD.1

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:1+i=z(1-i),
∴z=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i,
∴z的虚部为1.
故选:D.

点评 本题考查了复数的运算法则、虚部的定义,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设全集U=R,集合A={x|x≤3或x≥6},B={x|-2<x<9}.
(1)求A∪B,(∁UA)∩B;
(2)已知C={x|a<x<a+1},若B∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.下列函数中:
(1)$y=|x|+\frac{1}{|x|}$(2)$y=\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$(3)$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$(4)$y=\frac{{{x^2}-2x+4}}{x}$(5)$y=sinx+\frac{1}{sinx}(0<x<\frac{π}{2})$,其中最小值为2的函数是(1)(3) (填正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F分别为BC,PA的中点.
(I)求证:BF∥面PDE;
(Ⅱ)求二面角D-PE-A的大小的正弦值;
(Ⅲ)求点C到面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是R上的奇函数,在(0,+∞)上是增函数,且f(3)=0,则满足f(x)>0的实数x的范围是(  )
A.(-∞,-3)∪(0,3)B.(-3,0)∪(3,+∞)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设变量x,y满足约束条件$\left\{\begin{array}{l}2x+y≤4\\ x+2y≥2\\ x≥0\end{array}\right.$,则目标函数z=x-y的最小值为(  )
A.2B.-4C.-1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)是定义在R上的偶函数,若f(x)在区间[0,+∞)是增函数,且f(2)=0,则不等式f(x+2)>0的解集为(-∞,-4)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=ln(1-2x)的单调区间是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.作出函数y=-sinx,x∈[-π,π]的简图,并回答下列问题:
(1)观察函数图象,写出满足下列条件的x的区间.
①-sinx>0;②-sinx<0.
(2)直线y=$\frac{1}{2}$与y=-sinx的图象有几个交点?

查看答案和解析>>

同步练习册答案