精英家教网 > 高中数学 > 题目详情
4.求下列函数的导数:
(1)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$);    
(2)y=sin2(2x+$\frac{π}{3}$).

分析 根据函数的导数公式进行求解即可.

解答 解:(1)y=x(x2+$\frac{1}{x}$+$\frac{1}{{x}^{3}}$)=y=x3+1+$\frac{1}{{x}^{2}}$;
则y′=3x2-$\frac{2}{{x}^{3}}$;
(2)y′=2sin(2x+$\frac{π}{3}$)cos(2x+$\frac{π}{3}$)×2=2sin(4x+$\frac{2π}{3}$).

点评 本题主要考查函数的导数的计算,根据导数的公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2+$\frac{a}{x}$(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在区间[1,+∞)上为增函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算下列各式(式中字母都是正数):[81-0.25+(3$\frac{3}{8}$)${\;}^{-\frac{1}{3}}$]${\;}^{-\frac{1}{2}}$-10×0.027${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列椭圆的长轴长、短轴长、焦距、离心率、焦点坐标和顶点坐标,并画出图形:
(1)4x2+9y2=36;
(2)4x2+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个星级旅馆有150个标准房,经过一段时间的经营,得到一些定价和住房率的数据如下:
房价(元)住房率(%)
16055
14065
12075
10085
欲使每天的营业额最高,应如何定价?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.底面是菱形,侧棱长为5的直棱柱,它的对角线长分别为9和15,求这个棱柱的底面边长和侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数fn(x)=xn+kx+m(n∈N+,k,m∈R)
(1)设n≥2,k=1,m=-1,证明:fn(x)在区间($\frac{1}{2}$,1)内存在唯一的零点
(2)设n=2,k=-2,集合D={f(x)|f(x)在定义域内存在区间[a,b],使得f(x)在[a,b]上的值域也为[a,b],是否存在实数m,当a+b≤2时,使得函数fn(x)∈D,若存在,求出m的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a、b、c为正实数,(a+b+c)2=16($\frac{1}{ab}$+$\frac{1}{bc}$+$\frac{1}{ac}$),则(a+b)(b+c)的最小值为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2}(x≤1)}\\{{x}^{2}+x-2(x>1)}\end{array}\right.$,则f($\frac{1}{f(2)}$)=(  )
A.$\frac{15}{16}$B.-$\frac{27}{16}$C.$\frac{8}{9}$D.16

查看答案和解析>>

同步练习册答案