精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方体ABCDA1B1C1D1中,MN分别是A1B1B1C1的中点,问:

(1)AMCN是否是异面直线?说明理由;

(2)D1BCC1是否是异面直线?说明理由.

【答案】(1)不是异面直线(2)是异面直线

【解析】试题分析:(1)根据公理4得MNA1C1AC,所以两直线共面(2)由异面直线判定定理可得两直线为异面直线

试题解析:

(1)不是异面直线,理由:连结MNA1C1AC,如图,因为MN分别是A1B1B1C1的中点,所以MNA1C1.又因为A1A D1DD1DC1C,所以A1AC1C,四边形A1ACC1为平行四边形,所以A1C1AC,故MNA1C1AC,所以AMNC在同一个平面内,故AMCN不是异面直线.

(2)是异面直线,证明如下:假设D1BCC1在同一个平面CC1D1内,则B∈平面CC1D1C∈平面CC1D1,所以BC平面CC1D1,这显然是不正确的,所以假设不成立,故D1BCC1是异面直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数 (e=2.71828,是自然对数的底数)在的定义域上单调递增,则称函数具有M性质,下列函数中具有M性质的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

(1)求及基地的预期收益;

(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有五辆汽车,其中两辆汽车的车牌尾号均为1. 两辆汽车的车牌尾号均为2, 车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车, 三辆汽车每天出车的概率均为 两辆汽车每天出车的概率均为,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:

车牌尾号

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五

(1)求该公司在星期一至少有2辆汽车出国的概率;

(2)设表示该公司在星期二和星期三两天出车的车辆数之和,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC与△A1B1C1不全等,且A1B1∥AB,B1C1∥BC,C1A1∥CA.求证:AA1,BB1,CC1交于一点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点, 为抛物线上不同的两点, 分别是抛物线在点、点处的切线, 的交点.

(1)当直线经过焦点时,求证:点在定直线上;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,,其中(e是自然常数),

(1)当时, 求的单调区间、极值;

(2)是否存在,使的最小值是3,若存在求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

同步练习册答案