精英家教网 > 高中数学 > 题目详情
已知命题p:“对任意x∈[1,2],x2-a≥0”,命题q:“存在x∈R,x2+2ax+2-a=0”若命题“p且q”是真命题,求实数a的取值范围.
分析:求出命题p,q为真命题的等价条件,利用“p且q”是真命题,即可求a的取值范围.
解答:解:“对任意x∈[1,2],x2-a≥0”.
则a≤x2
∵1≤x2≤4,
∴a≤1,即命题p为真时:a≤1.
若“存在x∈R,x2+2ax+2-a=0”,
则△=4a2-4(2-a)≥0,
即a2+a-2≥0,
解得a≥1或a≤-2,
即命题q为真时:a≥1或a≤-2.
若“p∧q”是真命题,
则p,q同时为真命题,
a≤1
a≥1或a≤-2

解得a=1或a≤-2.
实数a取值范围是a=1或a≤-2.
点评:本题考查了复合命题的真假判断,求出命题P、q的为真时的等价条件是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则非p:存在x∈R,使得sinx>1.
其中所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“对任意的x∈R,x3-x2+1≤0”,则命题¬p是
存在x∈R,x3-x2+1>0
存在x∈R,x3-x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,则角C等于30°或150°.
其中所有真命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)下列命题为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:曲线方程
x2
2-k
+
y2
5-k
=1
表示焦点在y轴的双曲线;
命题q:已知
a
=(x,-k,1),
b
=(x,x,k+3)
,对任意x∈R,
a
b
>0
恒成立.
(Ⅰ) 写出命题q的否定形式¬q;
(Ⅱ) 求证:命题p成立是命题q成立的充分不必要条件.

查看答案和解析>>

同步练习册答案