精英家教网 > 高中数学 > 题目详情
14.已知关于x的一元二次方程c(a-b)x2+b(c-a)x+a(b-c)=0有两个相等实根,求证:$\frac{1}{a}$+$\frac{1}{c}$=$\frac{2}{b}$.

分析 令f(x)=c(a-b)x2+b(c-a)x+a(b-c),则f(1)=c(a-b)+b(c-a)+a(b-c)=0,则方程有两个相等的实数根1,运用韦达定理,即可得证.

解答 证明:令f(x)=c(a-b)x2+b(c-a)x+a(b-c),
则f(1)=c(a-b)+b(c-a)+a(b-c)
=ac-bc+bc-ab+ab-ac=0,
即有1为f(x)=0的根,
由题意可得f(x)=0有两个相等实根1,
则1×1=$\frac{a(b-c)}{c(a-b)}$,
即有ab-ac=ca-cb,
即2ac=b(a+c),
即为$\frac{2}{b}$=$\frac{1}{c}$+$\frac{1}{a}$.

点评 本题考查二次函数和二次方程的关系,注意运用韦达定理,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意的a、b∈R,都满足f(a•b)=af(b)+bf(a),若f($\frac{1}{2}$)=1,an=$\frac{f({2}^{-n})}{n}$.
(1)求f($\frac{1}{4}$)、f($\frac{1}{8}$)、f($\frac{1}{16}$)的值;
(2)猜测数列{an}通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.可以将椭圆$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=1变为圆x2+y2=4的伸缩变换为(  )
A.$\left\{\begin{array}{l}{x′=\frac{2}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{2}x}\\{y′=\sqrt{2}y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=\frac{\sqrt{2}}{2}x}\\{y′=\frac{\sqrt{10}}{5}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=\frac{\sqrt{10}}{5}x}\\{y′=\frac{\sqrt{2}}{2}y}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α=cos234°-cos256°,b=2sin78°sin12°,c=$\frac{2tan12°}{1-ta{n}^{2}12°}$,则有(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知 tanβ=3计算下列各式的值:
(1)$\frac{sinβ-2cosβ}{5cosβ+3sinβ}$        (2)2sinβ•cosβ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用数学归纳法证明1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}>\frac{n}{2}(n∈{N^*})$,假设n=k时成立,则当n=k+1时,不等式左边增加的项数是(  )
A.1B.k-1C.kD.2k

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线$\left\{\begin{array}{l}{x={x}_{0}+at}\\{y={y}_{0}+bt}\end{array}\right.$(t为参数)上两点A,B对应的参数值是t1,t2,则|AB|等于(  )
A.|t1+t2|B.|t1-t2|C.$\sqrt{{a}^{2}+{b}^{2}}$|t1-t2|D.$\frac{|{t}_{1}-{t}_{2}|}{\sqrt{{a}^{2}+{b}^{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=2,an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,n=1,2,3,…
(1)计算a2,a3,a4的值,根据计算结果,猜想{an}的通项公式;
(2)用数字归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.用数学归纳法证明1+$\frac{1}{2}+\frac{1}{3}+…$+$\frac{1}{{2}^{n}-1}<n$(n∈N且n>1),第二步证明中从“k到k+1”时,左端增加的项数是(  )
A.2k+1B.2k-1C.2kD.2k-1

查看答案和解析>>

同步练习册答案