精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的离心率,椭圆上的点到左焦点的距离的最大值为3.

(1)求椭圆的方程;

(2)求椭圆的外切矩形的面积的取值范围.

【答案】(1)(2)

【解析】

(1)根据题意求出,进而可求出结果;

(2)当矩形的一组对边斜率不存在时,可求出矩形的面积;当矩形四边斜率都存在时,不防设所在直线斜率为,则斜率为,设出直线的方程为,联立直线与椭圆方程,结合韦达定理以及弦长公式等,即可求解.

解:(1)由题设条件可得,解得

,所以椭圆的方程为

(2)当矩形的一组对边斜率不存在时,得矩形的面积

当矩形四边斜率都存在时,不防设所在直线斜率为,则斜率为

设直线的方程为,与椭圆联立可得

,得

显然直线的直线方程为,直线间的距离

同理可求得间的距离为

所以四边形面积为

(等号当且仅当时成立)

故由以上可得外切矩形面积的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数的一种方法.例如:3可表示为“”,26可表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用9数字表示两位数的个数为  

A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,平面平面是边长为2的等边三角形,

1)证明:平面平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线为其焦点,椭圆为其左右焦点,离心率,过轴的平行线交椭圆于两点,.

(1)求椭圆的标准方程;

(2)过抛物线上一点作切线交椭圆于两点,设轴的交点为的中点为的中垂线交轴为的面积分别记为,若,且点在第一象限.求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“柯西不等式”是由数学家柯西在研究数学分析中的“流数”问题时得到的,但从历史的角度讲,该不等式应当称为柯西﹣﹣布尼亚科夫斯基﹣﹣施瓦茨不等式,因为正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式推广到完善的地步,在高中数学选修教材4﹣5中给出了二维形式的柯西不等式:a2+b2)(c2+d2ac+bd2当且仅当adbc(即)时等号成立.该不等式在数学中证明不等式和求函数最值等方面都有广泛的应用.根据柯西不等式可知函数的最大值及取得最大值时x的值分别为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案