精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,ABCDACAB=2BC=2,ACFB.

(1)求证:AC⊥平面FBC

(2)求四面体FBCD的体积;

(3)线段AC上是否存在点M,使得EA∥平面FDM?证明你的结论.

【答案】(1) 见解析.(2) .(3) 见解析.

【解析】试题分析:

(1)(2)(3)

试题解析:

(1)证明:在△ABC中,

ACAB=2,BC=1,

ACBC

ACFBBC FBB

AC⊥平面FBC

(2)∵AC⊥平面FBCFC平面FBC

ACFC

∵CD⊥FC,ACCD=C,

FC⊥平面ABCD

在等腰梯形ABCD中可得∠BCD=120°,CBDC=1,

FC=1.

∴四面体FBCD的体积为

(3)线段AC上存在点M,且MAC中点时,有EA∥平面FDM

证明如下:

连接CE,与DF交于点N,连接MN

∵四边形CDEF为正方形,

NCE中点.

EAMN

MN平面FDMEA平面FDM

EA∥平面FDM

故线段AC上存在点M,使得EA∥平面FDM成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题错误的是(  )

A. pq为假命题,则pq为假命题

B. ab∈[0,1],则不等式a2b2<成立的概率是

C. 命题“x∈R,使得x2x+1<0”的否定是“x∈R,x2x+1≥0”

D. 已知函数f(x)可导,则“f′(x0)=0”是“x0是函数f(x)的极值点”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

判断在定义域上的单调性;

上的最小值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥PABCD的底面ABCD是矩形,PA⊥底面ABCD,点EF分别是棱PCPD的中点,则

①棱ABPD所在直线垂直;

②平面PBC与平面ABCD垂直;

③△PCD的面积大于△PAB的面积;

④直线AE与直线BF是异面直线.

以上结论正确的是________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求fx)的定义域;

2)当x∈(1+∞),

①求证:fx)在区间(1+∞)上是减函数;

②求使关系式f2+m)>f2m-1)成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠ADC=60°,侧面PDC是正三角形,平面PDC⊥平面ABCDCD=2,MPB的中点.

(1)求证:PA⊥平面CDM

(2)求二面角DMCB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:方程有两个不相等的实数根;命题:不等式的解集为.若为真,为假,求实数的取值范围.

【答案】

【解析】

根据“为真,为假”判断出“为真,为假”,利用判别式列不等式分别求得为假、为真时的取值范围,再取两者的交集求得实数的取值范围.

因为为真,为假,所以为真,为假

为假,,即:,∴ ,

为真,,即:,∴,

所以取交集为 .

【点睛】

本小题主要考查含有简单逻辑联结词命题的真假性,考查一元二次方程根与判别式的关系,考查一元二次不等式解集为与判别式的关系,属于中档题.

型】解答
束】
18

【题目】已知双曲线的中心在原点,焦点为且离心率.

(1)求双曲线的方程;

(2)求以点为中点的弦所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量.

1)求函数fx)的单调增区间.

2)若方程上有解,求实数m的取值范围.

3)设,已知区间[ab]abRab)满足:ygx)在[ab]上至少含有100个零点,在所有满足上述条件的[ab]中求ba的最小值.

查看答案和解析>>

同步练习册答案