精英家教网 > 高中数学 > 题目详情

已知函数f(x)=,

(1)求f(x)的定义域,并作出函数的图像;

(2)求f(x)的不连续点x0;

(3)对f(x)补充定义,使其是R上的连续函数.

(1) 函数的定义域是(-∞,-2)∪(-2,+∞) (2) 函数f(x)的不连续点是x0=-2, (3) 将f(x)的表达式改写为f(x)=

则函数f(x)在R上是连续函数


解析:

 (1)当x+2≠0时,有x≠-2

因此,函数的定义域是(-∞,-2)∪(-2,+∞)

x≠-2时,f(x)= =x-2,

其图像如上图

(2)由定义域知,函数f(x)的不连续点是x0=-2.

(3)因为当x≠-2时,f(x)=x-2,

所以=-4 

因此,将f(x)的表达式改写为f(x)=

则函数f(x)在R上是连续函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案