精英家教网 > 高中数学 > 题目详情
(1)求函数f(x)=
4-x
x-2
+log3(x+3)
的定义域;
(2)计算:log2(47×25)+lg
5100
+log23•log34
分析:(1)欲使函数有意义,须使各部分有意义,列出不等式组,解出即可;
(2)根据对数的运算法则可计算出结果.
解答:解:(1)由
4-x≥0
x-2≠0
x+3>0
,解得-3<x≤4,且x≠2.
所以函数的定义域为:{x|-3<x≤4,且x≠2}.
(2)原式=log2(214×25)+lg10
2
5
+
lg3
lg2
lg4
lg3

=log2214+log2215+
2
5
+log24
=14+15+
2
5
+2
=
157
5
点评:本题考查函数定义域的求解及对数的运算性质,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求函数f(x)=
x2-5x+6
+
(x-1)0
x+|x|
的定义域.
(2)求函数y=
x2-x
x2-x+1
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数f(x)=
92x-1-
1
27
的定义域.
(2)求函数y=4x-3•2x+3,x∈[-1,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A、B、C的对边分别是a,b,c,面积为S△ABC,且
m
=(b2+c2-a2,-2),
n
=(sinA,S△ABC)
m
n

(1)求函数f(x)=4cosxsin(x-
A
2
)
在区间[0,
π
2
]上的值域;
(2)若a=3,且sin(B+
π
3
)=
3
3
,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(cos2x,a),
q
=(a,2+
3
sin2x
),函数f(x)=
p
q
-5(a∈R,a≠0)
(1)求函数f(x)在[0,
π
2
]
上的最大值
(2)当a=2时,若对任意的t∈R,函数y=f(x),x∈(t,t+b]的图象与直线y=-1有且仅有两个不同的交点,试确定b的值,(不必证明),并求函数y=f(x)在(0,b]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx, 
3
2
), 
b
=(cosx, -1)

(1)求函数f(x)=(
a
+
b
)•
b
的最小正周期及值域;
(2)求函数f(x)=(
a
+
b
)•
b
[-
π
2
, 0]
上的值域.

查看答案和解析>>

同步练习册答案