分析 (1)设出切线方程,利用圆心到直线的距离等于半径,即可求切线QA、QB的方程;
(2)求出四边形QAMB的面积的表达式,利用|MQ|>|MO|求出面积的最小值;
(3)设AB与MQ交于点P,通过MP⊥AB,MB⊥BQ,求出|MP|,求出|MQ|,确定Q的坐标,即可求四边形QAMB外接圆的方程.
解答 解:(1)设过点Q的圆M的切线方程为x=my+2,------(1分)
则圆心M到切线的距离为2,∴$\frac{|4m+2|}{\sqrt{1+{m}^{2}}}$=2,
∴m=-$\frac{4}{3}$或0,------(4分)
∴切线QA、QB的方程分别为3x+4y-6=0和x=2------(5分)
(2)∵MA⊥AQ,∴SMAQB=|MA|•|QA|=$\sqrt{|MQ{|}^{2}-1}$≥$\sqrt{|MO{|}^{2}-1}$=$\sqrt{15}$,此时Q(0,0);-----(10分)
(3)设AB与MQ交于点P,则MP⊥AB,MB⊥BQ,|MP|=$\frac{\sqrt{2}}{2}$,
在Rt△MBQ中,|MB|2=|MP|•|MQ|,解得|MQ|=4$\sqrt{2}$
设Q(x,0),则x2+16=32,Q在x轴正半轴上,∴x=4
∴四边形QAMB外接圆的方程是(x-2)2+(y-2)2=8.----(14分)
点评 本题考查圆的切线方程的求法,四边形面积的求法,两点间的距离公式的应用,考查转化思想与计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 至多一对 | B. | 至多2对 | C. | 有无穷对 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {2,4,6} | B. | {1,3,5} | C. | {2,4} | D. | {2,5} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com