精英家教网 > 高中数学 > 题目详情

【题目】设二次函数在区间上的最大值为12,且关于x的不等式的解集为区间

①求函数的解析式;

②若对于任意的不等式恒成立,求实数m的取值范围.

【答案】1;2

【解析】

试题(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数、二次方程与二次不等式统称三个二次,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法,一般从:开口方向;对称轴位置;判别式;端点值符合四个方面分析;(3)二次函数的综合问题应用多涉及单调性与最值或二次方程根的分布问题,解决的主要思路是等价转化,多用到数形结合思想与分类讨论思想

试题解析:解:(1)依题意可设二次函数的解析式为fx=axx-5)且a>0,则

∴fx=axx-5=ax-252-625a

∵fx)在[-1,4]上的最大值为12

∴6a="12" a=2

2)解法一:设t=1-,则0≤t≤2

∴f2-2cosx<f1--m

2·2t·2t-5<2·t-m·t-m-5

3t-m-5)(t+m<0

实数m的取值范围为

解法二:因为fx)的对称轴为且其图象开口向上

所以f2-2cosx<f1--m)等价于

|2-2cosx-|<|1--m-| |2cosx+|<|+m+|

|2t-|<|t+m|

实数m的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且

1)求角A

2)若△ABC外接圆的面积为,且△ABC的面积,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,试证明:当时,

若对任意均有两个极值点

试求b应满足的条件;

时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的零点

1)求实数a的取值范围;

2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值与最小值.

(2)是否存在过点的直线与椭圆交于不同的两点,使得?若存在,求直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且,其中为奇函数,为偶函数。若关于x的方程上有解,则实数a的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足:(1);(2);(3)时,.大小关系

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=4x2-2(t-2)x-2t2-t+1在区间[-1,1]内至少存在一个值m,使得f(m)>0,则实数t的取值范围( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.

(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;

(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?

查看答案和解析>>

同步练习册答案