精英家教网 > 高中数学 > 题目详情
如图,F为双曲线
x2
a2
-
y2
b2
=1
的左焦点,A是它的右顶点,B1B2为虚轴,若∠FB1A=90°,则双曲线的离心率是(  )
分析:由题意求出A,B1,F的坐标,利用∠FB1A=90°,推出a,b,c的关系,即可求出双曲线的离心率.
解答:解:因为双曲线
x2
a2
-
y2
b2
=1
的左焦点F(-C,0),A是它的右顶点(a,0),B1B2为虚轴,B1(0,b),
因为∠FB1A=90°,所以AF2=B1F2+B1A2,即:(a+c)2=a2+b2+b2+c2,又c2=a2+b2
所以ac=c2-a2,e2-e-1=0解得e=
5
+1
2

故选D.
点评:本题是基础题,考查双曲线的简单性质的应用,注意勾股定理的应用,离心率的范围,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知以原点O为中心,F(
5
,0)
为右焦点的双曲线C的离心率e=
5
2

(1)求双曲线C的标准方程及其渐近线方程;
(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.精英家教网精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,从双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为(  )
A、|MO|-|MT|>b-a
B、|MO|-|MT|<b-a
C、|MO|-|MT|=b-a
D、以上三种可能都有

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知双曲线x2-
y2
3
=1
,A,C分别是虚轴的上、下顶点,B是左顶点,F为左焦点,直线AB与FC相交于点D,则∠BDF的余弦值是(  )
A、
7
7
B、
5
7
7
C、
7
14
D、
5
7
14

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过双曲线
x2
16
-
y2
25
=1
的左焦点F引圆x2+y2=16的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

请考生在(1)(2)中任选一题作答,每小题12分.如都做,按所做的第(1)题计分.
(1)如图,在△ABC中,AB=AC,∠C=72°,⊙O过A、B两点且与BC相切于点B,与AC交于点D,连接B、D,若BC=
5
-1
,求AC的长.
(2)已知双曲线C:x2-y2=2,以双曲线的左焦点F为极点,射线FO(O为坐标原点)为极轴,点M为双曲线上任意一点,其极坐标是(ρ,θ),试根据双曲线的定义求出ρ与θ的关系式(将ρ用θ表示).

查看答案和解析>>

同步练习册答案